Habib Nasir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109178/publications.pdf

Version: 2024-02-01

304743 289244 1,699 64 22 40 citations h-index g-index papers 65 65 65 1828 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Amphiphilic copolymers of dimethyl aminoethyl methacrylate and methyl methacrylate with controlled hydrophilicity for antialgal activity. Journal of Applied Polymer Science, 2022, 139, 51578.	2.6	3
2	Efficient photocatalytic degradation of nitrobenzene by copper-doped TiO2: kinetic study, degradation pathway, and mechanism. Environmental Science and Pollution Research, 2022, 29, 49925-49936.	5.3	5
3	Layer-By-Layer Self-Assembled Dip Coating for Antifouling Functionalized Finishing of Cotton Textile. Polymers, 2022, 14, 2540.	4.5	5
4	Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. Journal of Alloys and Compounds, 2021, 850, 156583.	5.5	139
5	Supramolecular assemblies of carbon nanocoils and tetraphenylporphyrin derivatives for sensing of catechol and hydroquinone in aqueous solution. Scientific Reports, 2021, 11, 5044.	3.3	16
6	Cefotaxime Loaded Polycaprolactone Based Polymeric Nanoparticles with Antifouling Properties for In-Vitro Drug Release Applications. Polymers, 2021, 13, 2180.	4.5	15
7	Electrocatalytic performance of NiNH2BDC MOF based composites with rGO for methanol oxidation reaction. Scientific Reports, 2021, 11, 13402.	3.3	28
8	Enhanced photoelectrochemical water splitting using zinc selenide/graphitic carbon nitride type-II heterojunction interface. International Journal of Hydrogen Energy, 2021, 46, 25424-25435.	7.1	24
9	Antialgal Synergistic Polystyrene Blended with Polyethylene Glycol and Silver Sulfadiazine for Healthcare Applications. Advances in Polymer Technology, 2021, 2021, 1-9.	1.7	0
10	Transpicuous-Cum-Fouling Resistant Copolymers of 3-Sulfopropyl Methacrylate and Methyl Methacrylate for Optronics Applications in Aquatic Medium and Healthcare. Advances in Polymer Technology, 2020, 2020, 1-11.	1.7	9
11	Synthesis, Characterization and Photocatalytic Activity of MoS2/ZnSe Heterostructures for the Degradation of Levofloxacin. Catalysts, 2020, 10, 1380.	3.5	15
12	Efficient Photoelectrochemical Water Splitting by Tailoring MoS2/CoTe Heterojunction in a Photoelectrochemical Cell. Nanomaterials, 2020, 10, 2341.	4.1	20
13	Nanocomposites of NiO/CuO Based MOF with rGO: An Efficient and Robust Electrocatalyst for Methanol Oxidation Reaction in DMFC. Nanomaterials, 2020, 10, 1601.	4.1	63
14	Synthesis, characterization and catalytic testing of MCM-22 derived catalysts for n-hexane cracking. Scientific Reports, 2020, 10, 21786.	3.3	10
15	Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renewable Energy, 2020, 156, 1040-1054.	8.9	108
16	Development of an Efficient Nonâ∈Noble Metal Based Anode Electrocatalyst to Promote Methanol Oxidation Activity in DMFC. ChemistrySelect, 2020, 5, 6023-6034.	1.5	18
17	Study of Zirconium and Ammonium Perchlorate Based Igniter for Composite Solid Base Bleed Propellant. International Journal of Chemical Engineering and Applications (IJCEA), 2020, 11, 29-33.	0.3	0
18	A Highly Efficient and Stable Copper BTC Metal Organic Framework Derived Electrocatalyst for Oxidation of Methanol in DMFC Application. Catalysis Letters, 2019, 149, 3312-3327.	2.6	59

#	Article	IF	CITATIONS
19	Development of Nickel-BTC-MOF-Derived Nanocomposites with rGO Towards Electrocatalytic Oxidation of Methanol and Its Product Analysis. Catalysts, 2019, 9, 856.	3.5	67
20	Development of zirconium and potassium perchlorate igniter for AP/HTPB composite propellant base bleed grain. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3939-3947.	3.6	6
21	Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction. Electrochimica Acta, 2019, 307, 1-12.	5.2	110
22	Helical gold nanotube film as stretchable micro/nanoscale strain sensor. Journal of Materials Science, 2018, 53, 2181-2192.	3.7	13
23	Improved dielectric properties of polyetherimide and polyaniline-coated few-layer graphene based nanocomposites. Journal of Materials Science: Materials in Electronics, 2018, 29, 402-411.	2.2	14
24	Synthesis of Cyanate Ester Based Thermoset Resin by Using Copper (II) Oxalate as Catalyst and its Application in Carbon Fiber Composites. Nano Hybrids and Composites, 2018, 22, 1-9.	0.8	1
25	Incidence of chlorination by-products in an institutional drinking water distribution network, Islamabad, Pakistan, using response surface methodology. Journal of Water Sanitation and Hygiene for Development, 2018, 8, 740-751.	1.8	4
26	Pressure-Time Study of Slow Burning Rate Ap/HTPB Based Composite Propellant by Using Closed Vessel Test (CVT). Key Engineering Materials, 2018, 778, 268-274.	0.4	2
27	Effect of trihalomethanes (chloroform and bromoform) on human haematological count. Journal of Water and Health, 2017, 15, 367-373.	2.6	12
28	A flexible, ultra-sensitive strain sensor based on carbon nanocoil network fabricated by an electrophoretic method. Nanoscale, 2017, 9, 9872-9878.	5.6	46
29	Electromagnetic microwave absorption properties of carbon nanocoils/tissue. Diamond and Related Materials, 2017, 77, 53-56.	3.9	15
30	Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation. Electrochimica Acta, 2017, 255, 195-204.	5.2	137
31	A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale, 2017, 9, 16404-16411.	5.6	48
32	Development of Cefotaxime Impregnated Chitosan as Nano-antibiotics: De Novo Strategy to Combat Biofilm Forming Multi-drug Resistant Pathogens. Frontiers in Microbiology, 2016, 7, 330.	3.5	55
33	Effect of metal ions and petrochemicals on bioremediation of chlorpyrifos in aerobic sequencing batch bioreactor (ASBR). Environmental Science and Pollution Research, 2016, 23, 20646-20660.	5.3	8
34	Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. International Journal of Biological Macromolecules, 2016, 91, 180-187.	7.5	26
35	Synthesis of Ion Imprinted Polymers by Copolymerization of Zn(II) and Al(III)8-hydroxy Quinolone Complexes with Divinylbenzene and Methacryclic Acid. Polymer-Plastics Technology and Engineering, 2016, 55, 1460-1473.	1.9	4
36	Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics. Carbohydrate Polymers, 2016, 142, 268-274.	10.2	46

#	Article	IF	Citations
37	Microbial population dynamics and profiling of quorum sensing agents in membrane bioreactor. International Biodeterioration and Biodegradation, 2016, 113, 66-73.	3.9	24
38	Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydrate Polymers, 2016, 136, 682-691.	10.2	63
39	Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan. Journal of Water and Health, 2015, 13, 270-284.	2.6	21
40	Novel Method for Preparation of Pure and Iron-Doped Titania Nanotube Coated Wood Surfaces to Disinfect Airborne Bacterial SpeciesPseudomonas aeruginosaandStaphylococcus aureus. Environmental Engineering Science, 2014, 31, 681-688.	1.6	4
41	Chlorination at Treatment Plant and Drinking Water Quality: A Case Study of Different Sectors of Islamabad, Pakistan. Arabian Journal for Science and Engineering, 2014, 39, 5665-5675.	1.1	6
42	Distribution, toxicity level, and concentration of polycyclic aromatic hydrocarbons (PAHs) in surface soil and groundwater of Rawalpindi, Pakistan. Desalination and Water Treatment, 2012, 49, 240-247.	1.0	23
43	Determination of Volatile Organic Compounds (VOCs) in Potable Water Using Solid Phase Micro Extraction-Gas Chromatography (SPME-GC). Arabian Journal for Science and Engineering, 2012, 37, 1255-1262.	1.1	6
44	Cleaner production technologies in desizing of cotton fabric. Journal of the Textile Institute, 2011, , $1\text{-}8$.	1.9	8
45	Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biology and Management, 2006, 6, 221-227.	1.4	30
46	Allelopathic Potential of Robinia pseudo-acacia L Journal of Chemical Ecology, 2005, 31, 2179-2192.	1.8	80
47	Isolation of allelochemicals from comfrey (Symphytum officinale L.): A candidate for allelopathic ground cover crop. Journal of Weed Science and Technology, 2005, 50, 94-95.	0.1	0
48	Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): Possible metabolic pathways from fungal sterols to 7-dehydrocholesterol. Archives of Insect Biochemistry and Physiology, 2003, 52, 175-182.	1.5	52
49	Isolation and identification of allelochemicals from methanolic extract of Robinia pseudo-acacia L. leaves. Journal of Weed Science and Technology, 2003, 48, 160-161.	0.1	1
50	The hydroxylation of testosterone and some relatives by Cephalosporium aphidicola. Phytochemistry, 1996, 42, 411-415.	2.9	53
51	The biotransformation of 8-epicedrol and some relatives by Cephalosporium aphidicola. Phytochemistry, 1995, 39, 1081-1084.	2.9	18
52	The biotransformation of the diterpenoid, sclareol, by Cephalosporium aphidicola. Phytochemistry, 1994, 36, 903-906.	2.9	11
53	Two non-nitrogenous triterpenoids from roots of Buxus papillosa. Phytochemistry, 1994, 35, 993-1000.	2.9	10
54	The biotransformation of some steroids by Cephalosporium aphidicola. Phytochemistry, 1993, 33, 831-834.	2.9	26

#	Article	IF	CITATIONS
55	Biotransformation of the sesquiterpenoid, cedrol, by Cephalosporium aphidicola. Phytochemistry, 1993, 33, 835-837.	2.9	27
56	Buxapapillosin - A New Triterpene from the Roots ofBuxus papillosa. Natural Product Research, 1993, 3, 131-138.	0.4	5
57	New Steroidal Alkaloids from the Roots of Buxus papillosa. Journal of Natural Products, 1992, 55, 1063-1066.	3.0	19
58	Novel triterpenoids from the roots of Buxus papillosa. Tetrahedron, 1992, 48, 3577-3584.	1.9	14
59	Two lupin alkaloids from Sophora griffithii. Phytochemistry, 1991, 30, 1001-1003.	2.9	8
60	A steroidal alkaloid from Buxus papillosa. Phytochemistry, 1990, 29, 683-685.	2.9	8
61	Three steroidal alkaloids from Buxus hildebrandtii. Phytochemistry, 1990, 29, 1293-1296.	2.9	12
62	Triterpenoid constituents of buxus papillosa. Phytochemistry, 1989, 28, 2848-2850.	2.9	9
63	Exfoliation of Graphene and its Application as Filler in Reinforced Polymer Nanocomposites. Nano Hybrids and Composites, 0, 11 , 7 - 21 .	0.8	3
64	Liquid-Phase Exfoliation of Few-Layer Graphene and Effect of Sonication Time on Concentration of Produced Few Layer Graphene. Nano Hybrids and Composites, 0, 14, 17-24.	0.8	7