Montserrat Camps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109003/publications.pdf

Version: 2024-02-01

52 papers 7,648 citations

33 h-index 52 g-index

52 all docs 52 docs citations

52 times ranked 8235 citing authors

#	Article	IF	CITATIONS
1	Efficacy and Pharmacodynamic Modeling of the BTK Inhibitor Evobrutinib in Autoimmune Disease Models. Journal of Immunology, 2019, 202, 2888-2906.	0.8	100
2	Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies. Frontiers in Immunology, 2014, 5, 233.	4.8	27
3	ASK1 promotes the contact hypersensitivity response through IL-17 production. Scientific Reports, 2014, 4, 4714.	3.3	14
4	Isoformâ€selective phosphoinositide 3â€kinase inhibitors induce apoptosis in chronic lymphocytic leukaemia cells. British Journal of Haematology, 2010, 150, 108-110.	2.5	11
5	GLEPP1/Protein-tyrosine Phosphatase i̇̀• Inhibitors Block Chemotaxis in Vitro and in Vivo and Improve Murine Ulcerative Colitis. Journal of Biological Chemistry, 2009, 284, 11385-11395.	3.4	16
6	Functional Whole-genome Analysis Identifies Polo-like Kinase 2 and Poliovirus Receptor as Essential for Neuronal Differentiation Upstream of the Negative Regulator $\hat{l}\pm B$ -crystallin. Journal of Biological Chemistry, 2009, 284, 32053-32065.	3.4	21
7	Chemokine receptor CCR2 undergoes transportin1â€dependent nuclear translocation. Proteomics, 2008, 8, 4560-4576.	2.2	26
8	BMP2 induction of actin cytoskeleton reorganization and cell migration requires PI3-kinase and Cdc42 activity. Journal of Cell Science, 2008, 121, 3960-3970.	2.0	106
9	Isoform-Specific Functions of Phosphoinositide 3-Kinases: $p110\hat{l}$ but Not $p110\hat{l}$ Promotes Optimal Allergic Responses In Vivo. Journal of Immunology, 2008, 180, 2538-2544.	0.8	111
10	A Chemical Proteomics Approach to Phosphatidylinositol 3-Kinase Signaling in Macrophages. Molecular and Cellular Proteomics, 2007, 6, 1829-1841.	3.8	34
11	The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood, 2007, 110, 3202-3208.	1.4	83
12	Inactivation of PI3K \hat{I}^3 and PI3K \hat{I}^\prime distorts T-cell development and causes multiple organ inflammation. Blood, 2007, 110, 2940-2947.	1.4	113
13	$PI(3)K\hat{l}^3$ has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biology, 2007, 9, 86-91.	10.3	233
14	Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nature Reviews Drug Discovery, 2007, 6, 391-403.	46.4	429
15	PI 3 Kδ and PI 3 Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond?. Nature Reviews Immunology, 2007, 7, 191-201.	22.7	382
16	Furan-2-ylmethylene Thiazolidinediones as Novel, Potent, and Selective Inhibitors of Phosphoinositide 3-Kinase \hat{I}^3 . Journal of Medicinal Chemistry, 2006, 49, 3857-3871.	6.4	188
17	Key role of the p $110\hat{l}$ isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p $110\hat{l}$ function in B cells. Blood, 2006, 107, 642-650.	1.4	202
18	Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 2006, 7, 274-283.	14.5	228

#	Article	IF	CITATIONS
19	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	1.4	274
20	Blockade of PI3K \hat{I}^3 suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nature Medicine, 2005, 11, 936-943.	30.7	711
21	PI3K \hat{I}^3 inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nature Medicine, 2005, 11, 933-935.	30.7	306
22	Design and Synthesis of the First Generation of Novel Potent, Selective, and in Vivo Active (Benzothiazol-2-yl)acetonitrile Inhibitors of the c-Jun N-Terminal Kinase. Journal of Medicinal Chemistry, 2005, 48, 4596-4607.	6.4	119
23	Involvement of Phosphoinositide 3-Kinase î³, Rac, and PAK Signaling in Chemokine-induced Macrophage Migration. Journal of Biological Chemistry, 2004, 279, 43273-43284.	3.4	93
24	MAP Kinase Phosphatase 3 (MKP3) Interacts with and Is Phosphorylated by Protein Kinase CK2α. Journal of Biological Chemistry, 2004, 279, 44731-44739.	3.4	33
25	Design, Synthesis, and Biological Activity of Novel, Potent, and Selective (Benzoylaminomethyl)thiophene Sulfonamide Inhibitors of c-Jun-N-Terminal Kinase. Journal of Medicinal Chemistry, 2004, 47, 6921-6934.	6.4	61
26	The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. Journal of Cell Science, 2001, 114, 3433-3443.	2.0	120
27	Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB Journal, 2000, 14, 6-16.	0.5	728
28	Substrate Recognition Domains within Extracellular Signal-regulated Kinase Mediate Binding and Catalytic Activation of Mitogen-activated Protein Kinase Phosphatase-3. Journal of Biological Chemistry, 2000, 275, 24613-24621.	3.4	88
29	Induction of the mitogen-activated protein kinase phosphatase MKP3 by nerve growth factor in differentiating PC12. FEBS Letters, 1998, 425, 271-276.	2.8	65
30	The Mitogen-activated Protein Kinase Phosphatase-3 N-terminal Noncatalytic Region Is Responsible for Tight Substrate Binding and Enzymatic Specificity. Journal of Biological Chemistry, 1998, 273, 9323-9329.	3.4	138
31	Activation of a phospholipase $\hat{Cl^2}$ deletion mutant by limited proteolysis. Biochemical Journal, 1998, 330, 461-468.	3.7	21
32	Bcl-2 Undergoes Phosphorylation by c-Jun N-terminal Kinase/Stress-activated Protein Kinases in the Presence of the Constitutively Active GTP-binding Protein Rac1. Journal of Biological Chemistry, 1997, 272, 25238-25242.	3.4	370
33	Molecular Cloning and Functional Characterization of a Novel Mitogen-activated Protein Kinase Phosphatase, MKP-4. Journal of Biological Chemistry, 1997, 272, 5141-5151.	3.4	134
34	Identification and Characterization of G Protein-Regulated Phospholipase C in Human Myocardium. Journal of Molecular and Cellular Cardiology, 1996, 28, 2419-2427.	1.9	25
35	MKP-3, a Novel Cytosolic Protein-tyrosine Phosphatase That Exemplifies a New Class of Mitogen-activated Protein Kinase Phosphatase. Journal of Biological Chemistry, 1996, 271, 4319-4326.	3.4	325
36	The Dual Specificity Phosphatases M3/6 and MKP-3 Are Highly Selective for Inactivation of Distinct Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 1996, 271, 27205-27208.	3.4	361

#	Article	IF	Citations
37	Activation of phospholipase C by G-protein $\hat{l}^2\hat{l}^3$ subunits in DDT1MF-2 cells. European Journal of Pharmacology, 1995, 288, 393-398.	2.6	13
38	Characterization of Putative Polyphosphoinositide Binding Motifs from Phospholipase C.beta.2. Biochemistry, 1995, 34, 5113-5119.	2.5	18
39	Mutational analysis of a putative polyphosphoinositide binding site in phospholipase C-Î ² 2. FEBS Letters, 1995, 365, 155-158.	2.8	14
40	Stimulation of phospholipase C-beta2 by recombinant guanine-nucleotide-binding protein betagamma dimers produced in a baculovirus/insect cell expression system. Requirement of gamma-subunit isoprenylation for stimulation of phospholipase C. FEBS Journal, 1994, 219, 171-178.	0.2	47
41	[14] Stimulation of phospholipase C by G-protein $\hat{l}^2\hat{l}^3$ subunits. Methods in Enzymology, 1994, 238, 181-195.	1.0	16
42	Mutational analysis of phospholipase C-beta2. Identification of regions required for membrane association and stimulation by guanine-nucleotide-binding protein betagamma subunits. FEBS Journal, 1993, 217, 1109-1115.	0.2	31
43	A peptide corresponding to a potential polyphosphoinositide binding site of phospholipase C- \hat{l}^2 2enhances its catalytic activity. FEBS Letters, 1993, 331, 248-251.	2.8	19
44	Activation of phosphatidylinositol lipid-specific phospholipase C- \hat{l}^2 3by G-protein $\hat{l}^2\hat{l}^3$ subunits. FEBS Letters, 1993, 315, 340-342.	2.8	77
45	Stimulation of phospholiphase C by a mutationally activated G protein $\hat{l}\pm 16$ subunit. Biochemical and Biophysical Research Communications, 1992, 188, 1018-1023.	2.1	17
46	Expression, characterization and purification of soluble G-protein $\hat{l}^2\hat{l}^3$ dimers composed of defined subunits in baculovirus-infected insect cells. FEBS Letters, 1992, 313, 220-224.	2.8	26
47	Isozyme-selective stimulation of phospholipase C- \hat{l}^2 2 by G protein $\hat{l}^2\hat{l}^3$ -subunits. Nature, 1992, 360, 684-686.	27.8	634
48	Stimulation of phospholipase C by guanine-nucleotide-binding protein betagamma subunits. FEBS Journal, 1992, 206, 821-831.	0.2	262
49	Dopamine D ₁ and D ₂ Receptors Visualized in MPTP Treated C57 Mice by <i>in Vitro</i> Autoradiography: Lack of Evidence of Receptor Modifications in Parkinsonian Mice. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 169-174.	0.0	4
50	Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology. Brain Research, 1989, 483, 30-38.	2.2	107
51	In vivo labeling of brain dopamine D2 receptors using the high-affinity specific D2 agonist [3H]CV 205–502. Brain Research, 1988, 440, 123-132.	2.2	48
52	Autoradiographic localization of dopamine D2 receptors in the rat brain using the new agonist [3H]N-0437. Neuroscience Letters, 1987, 83, 259-263.	2.1	19