Martina Cirlini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/710860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Computational Understanding of Inter-Individual Variability in CYP2D6 Activity to Investigate the Impact of Missense Mutations on Ochratoxin A Metabolism. Toxins, 2022, 14, 207.	3.4	5
2	A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends in Food Science and Technology, 2022, 122, 40-48.	15.1	13
3	Influence of Processing Parameters and Natural Antimicrobial on Alicyclobacillus acidoterrestris and Clostridium pasteurianum Using Response Surface Methodology. Foods, 2022, 11, 1063.	4.3	2
4	Dynamic changes in molecular composition of black soldier fly prepupae and derived biomasses with microbial fermentation. Food Chemistry: X, 2022, 14, 100327.	4.3	3
5	Exploring the Potential of Lactic Acid Fermentation for the Recovery of Exhausted Vanilla Beans. Frontiers in Nutrition, 2022, 9, .	3.7	4
6	Volatile profile of Italian and Montenegrine pomegranate juices for geographical origin classification. European Food Research and Technology, 2021, 247, 211-220.	3.3	8
7	Effect of fermentation with single and co-culture of lactic acid bacteria on okara: evaluation of bioactive compounds and volatile profiles. Food and Function, 2021, 12, 3033-3043.	4.6	29
8	Microbiological Contamination of Ready-to-Eat Algae and Evaluation of Bacillus cereus Behavior by Microbiological Challenge Test. Journal of Food Protection, 2021, 84, 1275-1280.	1.7	8
9	Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods, 2021, 10, 707.	4.3	47
10	Arthrospira platensis Extract: A Non-Invasive Strategy to Obtain Adjunct Attenuated Cultures. Foods, 2021, 10, 588.	4.3	2
11	Exploitation of sea fennel (Crithmum maritimum L.) for manufacturing of novel high-value fermented preserves. Food and Bioproducts Processing, 2021, 127, 174-197.	3.6	21
12	Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods, 2021, 10, 1092.	4.3	12
13	Production and recovery of volatile compounds from fermented fruit by-products with Lacticaseibacillus rhamnosus. Food and Bioproducts Processing, 2021, 128, 215-226.	3.6	9
14	Stabilization of <i>Arthrospira platensis</i> with highâ€pressure processing and thermal treatments: Effect on physicoâ€chemical and microbiological quality. Journal of Food Processing and Preservation, 2021, 45, e15912.	2.0	4
15	Solid-State Fermentation of Arthrospira platensis to Implement New Food Products: Evaluation of Stabilization Treatments and Bacterial Growth on the Volatile Fraction. Foods, 2021, 10, 67.	4.3	22
16	Effects of Thermal and High-Pressure Processing on Quality Features and the Volatile Profiles of Cloudy Juices Obtained from Golden Delicious, Pinova, and Red Delicious Apple Cultivars. Foods, 2021, 10, 3046.	4.3	3
17	Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT - Food Science and Technology, 2020, 118, 108668.	5.2	58
18	Application of lactic acid fermentation to elderberry juice: Changes in acidic and glucidic fractions. LWT - Food Science and Technology, 2020, 118, 108779.	5.2	33

MARTINA CIRLINI

#	Article	IF	CITATIONS
19	Edible Seaweeds and Spirulina Extracts for Food Application: In Vitro and In Situ Evaluation of Antimicrobial Activity towards Foodborne Pathogenic Bacteria. Foods, 2020, 9, 1442.	4.3	39
20	Antimicrobial Biomasses from Lactic Acid Fermentation of Black Soldier Fly Prepupae and Related By-Products. Microorganisms, 2020, 8, 1785.	3.6	13
21	Development of Lactic Acid-Fermented Tomato Products. Microorganisms, 2020, 8, 1192.	3.6	12
22	Bacteriostatic or bactericidal? Impedometric measurements to test the antimicrobial activity of Arthrospira platensis extract. Food Control, 2020, 118, 107380.	5.5	16
23	Lactobacillus paracasei 4341 as adjunct culture to enhance flavor in short ripened Caciotta-type cheese. Food Research International, 2020, 135, 109284.	6.2	31
24	Arthrospira platensis as Natural Fermentation Booster for Milk and Soy Fermented Beverages. Foods, 2020, 9, 350.	4.3	28
25	Antimicrobial and Fermentation Potential of Himanthalia elongata in Food Applications. Microorganisms, 2020, 8, 248.	3.6	19
26	Phenotypic Diversity of Lactobacillus casei Group Isolates as a Selection Criterion for Use as Secondary Adjunct Starters. Microorganisms, 2020, 8, 128.	3.6	12
27	From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods, 2019, 8, 309.	4.3	25
28	Orange peels: from byâ€product to resource through lactic acid fermentation. Journal of the Science of Food and Agriculture, 2019, 99, 6761-6767.	3.5	32
29	Expression of DinJ-YafQ System of Lactobacillus casei Group Strains in Response to Food Processing Stresses. Microorganisms, 2019, 7, 438.	3.6	9
30	Evaluation of the volatile fraction, pungency and extractable color of different Italian Capsicum annuum cultivars designed for food industry. European Food Research and Technology, 2019, 245, 2669-2678.	3.3	16
31	Impact of Naturally Contaminated Substrates on Alphitobius diaperinus and Hermetia illucens: Uptake and Excretion of Mycotoxins. Toxins, 2019, 11, 476.	3.4	26
32	Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins, 2019, 11, 499.	3.4	16
33	Use of Dairy and Plant-Derived Lactobacilli as Starters for Cherry Juice Fermentation. Nutrients, 2019, 11, 213.	4.1	62
34	5-n-alkylresorcinols but not hydroxycinnamic acids are directly related to a lower accumulation of deoxynivalenol and its glucoside in Triticum spp. Genotypes with different ploidity levels. Journal of Cereal Science, 2019, 85, 214-220.	3.7	10
35	A sensitive UHPLC-ESI-MS/MS method for the determination of tropane alkaloids in herbal teas and extracts. Food Control, 2019, 105, 285-291.	5.5	26
36	In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. Food Bioscience, 2019, 29, 102-109.	4.4	16

MARTINA CIRLINI

#	Article	IF	CITATIONS
37	Vegetable By-Product Lacto-Fermentation as a New Source of Antimicrobial Compounds. Microorganisms, 2019, 7, 607.	3.6	34
38	In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. Food Chemistry, 2019, 276, 692-699.	8.2	66
39	Are tropane alkaloids present in organic foods? Detection of scopolamine and atropine in organic buckwheat (Fagopyron esculentum L.) products by UHPLC–MS/MS. Food Chemistry, 2018, 239, 141-147.	8.2	47
40	The Influence of Viable Cells and Cell-Free Extracts of Lactobacillus casei on Volatile Compounds and Polyphenolic Profile of Elderberry Juice. Frontiers in Microbiology, 2018, 9, 2784.	3.5	18
41	Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum , L. rhamnosus and L. casei strains. Food Research International, 2018, 105, 412-422.	6.2	107
42	Formulation and processing factors affecting trichothecene mycotoxins within industrial biscuit-making. Food Chemistry, 2017, 229, 597-603.	8.2	30
43	Molecular insights on xenoestrogenic potential of zearalenone-14-glucoside through a mixed inÂvitro/in silico approach. Food and Chemical Toxicology, 2017, 108, 257-266.	3.6	29
44	Are Treated Celiac Patients at Risk for Mycotoxins? An Italian Case-Study. Toxins, 2017, 9, 11.	3.4	7
45	Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules, 2016, 21, 1576.	3.8	159
46	Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation. Frontiers in Microbiology, 2016, 7, 1628.	3.5	35
47	Phenolic and Volatile Composition of a Dry Spearmint (Mentha spicata L.) Extract. Molecules, 2016, 21, 1007.	3.8	95
48	Study on the uptake and deglycosylation of the masked forms of zearalenone in human intestinal Caco-2 cells. Food and Chemical Toxicology, 2016, 98, 232-239.	3.6	29
49	Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology. Toxins, 2015, 7, 2773-2790.	3.4	33
50	Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation. Toxins, 2015, 7, 3657-3670.	3.4	10
51	Hydrolysed fumonisin B1andN-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 2015, 66, 98-103.	2.8	17
52	Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling. PLoS ONE, 2015, 10, e0128669.	2.5	78
53	Gliadin-mediated production of polyamines by RAW264.7 macrophages modulates intestinal epithelial permeability in vitro. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1779-1786.	3.8	14
54	The influence of seasonality on total fat and fatty acids profile, protein and amino acid, and antioxidant properties of traditional Italian flours from different chestnut cultivars. Scientia Horticulturae, 2015, 192, 132-140.	3.6	18

MARTINA CIRLINI

#	Article	IF	CITATIONS
55	Quantification of 3-MCPD and its mercapturic metabolite in human urine: validation of an LC–MS–MS method and its application in the general population. Analytical and Bioanalytical Chemistry, 2015, 407, 4823-4827.	3.7	19
56	Durum and soft wheat flours in sourdough and straight-dough bread-making. Journal of Food Science and Technology, 2015, 52, 6254-6265.	2.8	20
57	Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread. Journal of the Science of Food and Agriculture, 2015, 95, 59-65.	3.5	17
58	Starch and thermal treatment, important factors in changing detectable fumonisins in maize post-harvest. Journal of Cereal Science, 2015, 61, 78-85.	3.7	16
59	Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food and Chemical Toxicology, 2015, 76, 11-18.	3.6	66
60	Influence of the industrial process from caryopsis to cornmeal semolina on levels of fumonisins and their masked forms. Food Control, 2015, 48, 170-174.	5.5	19
61	Durum Wheat (Triticum Durum Desf.) Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions. Toxins, 2014, 6, 81-95.	3.4	27
62	LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Frontiers in Microbiology, 2014, 5, 669.	3.5	37
63	A Novel Time/Temperature Approach to Sous Vide Cooking of Beef Muscle. Food and Bioprocess Technology, 2014, 7, 2969-2977.	4.7	41
64	Mycotoxins from Alternaria. Advances in Molecular Toxicology, 2014, 8, 107-121.	0.4	36
65	Altitude effects on fruit morphology and flour composition of two chestnut cultivars. Scientia Horticulturae, 2014, 176, 311-318.	3.6	12
66	The presence, genetic diversity and behaviour of Listeria monocytogenes in blue-veined cheese rinds during the shelf life. Food Control, 2013, 34, 323-330.	5.5	24
67	Identification and characterization of ancient Italian chestnut using nuclear microsatellite markers. Scientia Horticulturae, 2013, 164, 50-57.	3.6	16
68	Effect of chestnut flour supplementation on physico-chemical properties and volatiles in bread making. LWT - Food Science and Technology, 2013, 53, 233-239.	5.2	66
69	Masked Mycotoxins Are Efficiently Hydrolyzed by Human Colonic Microbiota Releasing Their Aglycones. Chemical Research in Toxicology, 2013, 26, 305-312.	3.3	166
70	LC/ESIâ€MS/MS analysis outlines the different fumonisin patterns produced by <i>F. verticillioides</i> in culture media and in maize kernels. Journal of Mass Spectrometry, 2012, 47, 1170-1176.	1.6	16
71	Characterization of a Potential Nutraceutical Ingredient: Pomegranate (Punica granatum L.) Seed Oil Unsaponifiable Fraction. Plant Foods for Human Nutrition, 2010, 65, 277-283.	3.2	90
72	1H NMR Fingerprinting of Soybean Extracts, with Emphasis on Identification and Quantification of Isoflavones. Nutrients, 2010, 2, 280-289.	4.1	42

#	Article	IF	CITATIONS
73	¹ H NMR Study of Fermented Cocoa (Theobroma cacao L.) Beans. Journal of Agricultural and Food Chemistry, 2010, 58, 12105-12111.	5.2	47
74	Formation of glucose and fructose acetates during maturation and ageing of balsamic vinegars. Food Chemistry, 2009, 112, 51-56.	8.2	24
75	GC-MS detection of chiral markers in cocoa beans of different quality and geographic origin. Chirality, 2007, 19, 329-334.	2.6	65