
## Zlatko Šatović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108234/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their<br>effectiveness in establishing genetic relationships in olive. Theoretical and Applied Genetics, 2003, 107,<br>736-744. | 3.6 | 269       |

Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs,) Tj ETQq0 0 0 rg $\frac{\text{BT}}{1.6}$ /Overlock 10 Tf 50 241

| 3  | Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry, 2010, 119, 196-201.                                                                                       | 8.2 | 185 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 4  | Genetic Diversity and Population Structure of Wild Olives from the North-western Mediterranean<br>Assessed by SSR Markers. Annals of Botany, 2007, 100, 449-458.                                           | 2.9 | 149 |
| 5  | Medicinal plants of the family Lamiaceae as functional foods - a review. Czech Journal of Food<br>Sciences, 2016, 34, 377-390.                                                                             | 1.2 | 141 |
| 6  | Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theoretical and Applied Genetics, 2002, 105, 638-644.           | 3.6 | 131 |
| 7  | Faba bean breeding for resistance against biotic stresses: Towards application of marker technology.<br>Euphytica, 2006, 147, 67-80.                                                                       | 1.2 | 104 |
| 8  | Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Scientia<br>Horticulturae, 2010, 124, 323-330.                                                               | 3.6 | 104 |
| 9  | Mapping of quantitative trait loci controlling broomrape (Orobanche crenataForsk.) resistance in<br>faba bean (Vicia fabaL.). Genome, 2002, 45, 1057-1063.                                                 | 2.0 | 103 |
| 10 | Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L) Theoretical<br>and Applied Genetics, 2004, 108, 1071-1078.                                                     | 3.6 | 94  |
| 11 | Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theoretical and Applied Genetics, 2005, 111, 511-520.                                                                           | 3.6 | 88  |
| 12 | Genetic relations among basil taxa (Ocimum L.) based on molecular markers, nuclear DNA content, and chromosome number. Plant Systematics and Evolution, 2010, 285, 13-22.                                  | 0.9 | 85  |
| 13 | Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by<br>agro-morphological traits and SSR markers. Scientia Horticulturae, 2011, 129, 561-569.                           | 3.6 | 85  |
| 14 | Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers.<br>Euphytica, 2004, 137, 63-72.                                                                                | 1.2 | 84  |
| 15 | Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30<br>November 2009. Molecular Ecology Resources, 2010, 10, 404-408.                                              | 4.8 | 84  |
| 16 | Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theoretical and Applied<br>Genetics, 2002, 105, 946-952.                                                                         | 3.6 | 72  |
| 17 | Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theoretical and Applied Genetics, 2012, 125, 1767-1782. | 3.6 | 69  |
| 18 | Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp.<br>syriacum. Molecular Breeding, 2008, 21, 439-454.                                                    | 2.1 | 62  |

| #  | Article                                                                                                                                                                                             | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 19 | Locating genes associated with Ascochyta fabae resistance in Vicia faba. Australian Journal of<br>Agricultural Research, 2003, 54, 85.                                                              | 1.5             | 61           |
| 20 | Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata<br>Forsk. in pea (Pisum sativum L.). Molecular Breeding, 2010, 25, 259-272.                    | 2.1             | 60           |
| 21 | Development of a composite map in Vicia faba, breeding applications and future prospects. Theoretical and Applied Genetics, 2004, 108, 1079-1088.                                                   | 3.6             | 58           |
| 22 | Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean<br>Populations of Fraxinus angustifolia Vahl. PLoS ONE, 2012, 7, e42764.                                | 2.5             | 58           |
| 23 | Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theoretical and Applied Genetics, 2003, 107, 857-863.                     | 3.6             | 56           |
| 24 | Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments<br>and generations. Theoretical and Applied Genetics, 2010, 120, 909-919.                      | 3.6             | 54           |
| 25 | Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi<br>(Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica, 2010, 175, 151-159.   | 1.2             | 54           |
| 26 | Molecular and chemical characterization of the most widespread Ocimum species. Plant Systematics and Evolution, 2011, 294, 253-262.                                                                 | 0.9             | 54           |
| 27 | Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Research, 2004, 44, 323-328.                                                                             | 1.7             | 53           |
| 28 | Phylogenetic relationships in Brassicaceae tribe Alysseae inferred from nuclear ribosomal and chloroplast DNA sequence data. Molecular Phylogenetics and Evolution, 2013, 69, 772-786.              | 2.7             | 53           |
| 29 | A reference consensus genetic map for molecular markers and economically important traits in faba<br>bean (Vicia fabaL.). BMC Genomics, 2013, 14, 932.                                              | 2.8             | 53           |
| 30 | Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Reports, 2014, 33, 1133-1145.                 | 5.6             | 53           |
| 31 | Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.).<br>Euphytica, 2008, 164, 93-104.                                                         | 1.2             | 52           |
| 32 | Quantitative Trait Loci Associated to Drought Adaptation in Pea (Pisum sativum L.). Plant Molecular<br>Biology Reporter, 2015, 33, 1768-1778.                                                       | 1.8             | 51           |
| 33 | Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics.<br>Theoretical and Applied Genetics, 1996, 93, 1130-1138.                                          | 3.6             | 50           |
| 34 | Identification of common genomic regions controlling resistance to Mycosphaerella pinodes,<br>earliness and architectural traits in different pea genetic backgrounds. Euphytica, 2011, 182, 43-52. | 1.2             | 50           |
| 35 | Identification and characterization of NBS–LRR class resistance gene analogs in faba bean (Vicia faba) Tj ETQq1                                                                                     | 1.0.7843<br>2.0 | 14 rgBT /Cwe |
| 36 | Genetic Diversity of Croatian Common Bean Landraces. Frontiers in Plant Science, 2017, 8, 604.                                                                                                      | 3.6             | 49           |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Variation Among and Within Populations of the Parasitic Weed Orobanche crenata from Spain and<br>Israel Revealed by Inter Simple Sequence Repeat Markers. Phytopathology, 2002, 92, 1262-1266.    | 2.2 | 46        |
| 38 | Genetic Relationships among Orobanche Species as Revealed by RAPD Analysis. Annals of Botany, 2003, 91, 637-642.                                                                                  | 2.9 | 45        |
| 39 | High Diversity of Indigenous Populations of Dalmatian Sage ( <i>Salvia officinalis</i> L.) in Essentialâ€Oil<br>Composition. Chemistry and Biodiversity, 2012, 9, 2309-2323.                      | 2.1 | 45        |
| 40 | Chemical Characterization and Genetic Relationships among <i>Ocimum basilicum</i> L. Cultivars.<br>Chemistry and Biodiversity, 2011, 8, 1978-1989.                                                | 2.1 | 44        |
| 41 | Utility of wild germplasm in olive breeding. Scientia Horticulturae, 2013, 152, 92-101.                                                                                                           | 3.6 | 43        |
| 42 | Genetic diversity in Orobanche crenata populations from southern Spain. Theoretical and Applied Genetics, 2001, 103, 1108-1114.                                                                   | 3.6 | 42        |
| 43 | Morphological and biochemical intraspecific characterization of Ocimum basilicum L. Industrial Crops and Products, 2017, 109, 611-618.                                                            | 5.2 | 42        |
| 44 | QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Molecular Breeding, 2013, 32, 909-922.                                              | 2.1 | 39        |
| 45 | Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height,<br>flag-leaf height and stem diameter. Theoretical and Applied Genetics, 2003, 107, 123-129. | 3.6 | 38        |
| 46 | Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome, 2004, 47,<br>889-899.                                                                                     | 2.0 | 38        |
| 47 | Title is missing!. Euphytica, 2003, 130, 387-395.                                                                                                                                                 | 1.2 | 37        |
| 48 | Genetic structure and differentiation in hop (Humulus lupulus L.) as inferred from microsatellites.<br>Euphytica, 2008, 161, 301-311.                                                             | 1.2 | 37        |
| 49 | Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Scientia Horticulturae, 2012, 136, 50-60.                                       | 3.6 | 37        |
| 50 | Host differentiation in Orobanche foetida Poir. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 201-208.                                                                | 1.2 | 35        |
| 51 | Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean<br>(Vicia faba L.). Crop and Pasture Science, 2009, 60, 353.                                    | 1.5 | 35        |
| 52 | Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breeding, 2003, 122, 141-145.                           | 1.9 | 34        |
| 53 | Genetic diversity of Moroccan populations of <i>Orobanche foetida</i> : evolving from parasitising wild hosts to crop plants. Weed Research, 2008, 48, 179-186.                                   | 1.7 | 34        |
| 54 | Genetics and mapping of new isozyme loci in Vicia faba L using trisomics. Theoretical and Applied<br>Genetics, 1995, 91, 783-789.                                                                 | 3.6 | 32        |

| #  | Article                                                                                                                                                                                                                                         | IF               | CITATIONS             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| 55 | New microsatellite markers for <i>Salvia officinalis</i> (Lamiaceae) and crossâ€amplification in closely related species. American Journal of Botany, 2011, 98, e316-8.                                                                         | 1.7              | 32                    |
| 56 | Development of New Microsatellite Markers for Salvia officinalis L. and Its Potential Use in<br>Conservation-Genetic Studies of Narrow Endemic Salvia brachyodon Vandas. International Journal of<br>Molecular Sciences, 2012, 13, 12082-12093. | 4.1              | 32                    |
| 57 | Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum) Tj ETQq1 1 0                                                                                                                                   | .784314 r<br>3.6 | gB <u>T</u> /Overlock |
| 58 | Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss.<br>Euphytica, 2003, 132, 353-361.                                                                                                               | 1.2              | 31                    |
| 59 | Development of co-dominant amplified polymorphic sequence markers for resistance of sunflower to downy mildew race 730. Plant Breeding, 2007, 126, 440-444.                                                                                     | 1.9              | 31                    |
| 60 | Efficiency of morphological trait descriptors in discrimination of <i>Ocimum basilicum</i> L. accessions. Plant Biosystems, 2011, 145, 298-305.                                                                                                 | 1.6              | 31                    |
| 61 | Helichrysum italicum (Roth) G. Don: Taxonomy, biological activity, biochemical and genetic diversity.<br>Industrial Crops and Products, 2019, 138, 111487.                                                                                      | 5.2              | 31                    |
| 62 | Establishing the Bases for Introducing the Unexplored Portuguese Common Bean Germplasm into the<br>Breeding World. Frontiers in Plant Science, 2017, 8, 1296.                                                                                   | 3.6              | 30                    |
| 63 | Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting<br>Habitat Conditions. Genome Biology and Evolution, 2018, 10, 291-303.                                                                       | 2.5              | 30                    |
| 64 | Identification of quantitative trait loci for resistance to Verticillium wilt and yield parameters in hop<br>(Humulus lupulus L.). Theoretical and Applied Genetics, 2013, 126, 1431-1443.                                                      | 3.6              | 29                    |
| 65 | Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content.<br>Genome, 2006, 49, 485-494.                                                                                                              | 2.0              | 28                    |
| 66 | Identifying refugia from climate change using coupled ecological and genetic data in a transitional<br><scp>M</scp> editerraneanâ€ŧemperate tree species. Molecular Ecology, 2013, 22, 2128-2142.                                               | 3.9              | 28                    |
| 67 | Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny. PLoS ONE, 2015, 10, e0124543.                                                                                                                                    | 2.5              | 27                    |
| 68 | Characterizing Croatian Wheat Germplasm Diversity and Structure in a European Context by DArT<br>Markers. Frontiers in Plant Science, 2016, 7, 184.                                                                                             | 3.6              | 27                    |
| 69 | Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences. Plant Systematics and Evolution, 2007, 265, 45-58.                                                                              | 0.9              | 26                    |
| 70 | Genome-Wide Association Studies of Mineral Content in Common Bean. Frontiers in Plant Science, 2021, 12, 636484.                                                                                                                                | 3.6              | 26                    |
| 71 | Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations:<br>Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae). PLoS ONE, 2016, 11, e0159545.                                               | 2.5              | 26                    |
| 72 | Genetic diversity evolution through participatory maize breeding in Portugal. Euphytica, 2008, 161, 283-291.                                                                                                                                    | 1.2              | 25                    |

| #  | Article                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Population genetics in weedy species of <i>Orobanche</i> . Australasian Plant Pathology, 2009, 38, 228. | 1.0 | 25        |

## Genetic Diversity and Structure of Dalmatian Pyrethrum (Tanacetum cinerariifolium Trevir. /Sch./ Bip.,) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

| 75       | Essential Oils and Chemical Diversity of Southeast European Populations ofSalvia officinalisL<br>Chemistry and Biodiversity, 2015, 12, 1025-1039.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1               | 25             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 76       | Longâ€ŧerm onâ€farm participatory maize breeding by stratified mass selection retains molecular diversity while improving agronomic performance. Evolutionary Applications, 2018, 11, 254-270.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1               | 25             |
| 77       | Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48)<br>(Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for<br>their common genome origin. Annals of Botany, 2012, 110, 703-712.                                                                                                                                                                                                                                                                                                                                                                      | 2.9               | 24             |
| 78       | Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica, 2012, 186, 805-812.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2               | 23             |
| 79       | Chemotype Diversity of Indigenous Dalmatian Sage (Salvia officinalisL.) Populations in Montenegro.<br>Chemistry and Biodiversity, 2014, 11, 101-114.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1               | 23             |
| 80       | Genetic Variation Among and Within <i>Uromyces</i> Species Infecting Legumes. Journal of Phytopathology, 2008, 156, 419-424.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0               | 22             |
| 81       | The effect of germination temperature on seed dormancy in Croatian-grown winter wheats. Euphytica, 2012, 188, 25-34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2               | 22             |
| 82       | Phylogenetic Analysis of Uromyces Species Infecting Grain and Forage Legumes by Sequence analysis of<br>Nuclear Ribosomal Internal Transcribed Spacer Region. Journal of Phytopathology, 2011, 159, 137-145.                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0               | 21             |
| 83       | Genetic diversity and relationships among species of the genus Thymus L. (section Serpyllum). Flora:<br>Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 654-661.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2               | 21             |
| 84       | Genetic diversity of the sweet chestnut (Castanea sativa Mill.) in Central Europe and the western part<br>of the Balkan Peninsula and evidence of marron genotype introgression into wild populations. Tree                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                |
|          | Genetics and Genomes, 2017, 13, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6               | 21             |
| 85       | Genetics and Genomes, 2017, 13, 1.<br>Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica, 2018, 214, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6<br>1.2        | 21             |
| 85<br>86 | Genetics and Genomes, 2017, 13, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                |
|          | Genetics and Genomes, 2017, 13, 1.<br>Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica, 2018, 214, 1.<br>Genetic and morphological data reveal new insights into the taxonomy of <i>Campanula</i>                                                                                                                                                                                                                                                                                                                                                                                             | 1.2               | 21             |
| 86       | Genetics and Genomes, 2017, 13, 1.<br>Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica, 2018, 214, 1.<br>Genetic and morphological data reveal new insights into the taxonomy of <i>Campanula<br/>versicolor</i> s.l. (Campanulaceae). Taxon, 2019, 68, 340-369.<br>Divergent selection and genetic structure of Sideritis scardica populations from southern Balkan                                                                                                                                                                                                                          | 1.2<br>0.7        | 21<br>21       |
| 86<br>87 | <ul> <li>Genetics and Genomes, 2017, 13, 1.</li> <li>Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica, 2018, 214, 1.</li> <li>Genetic and morphological data reveal new insights into the taxonomy of <i>Campanula versicolor</i> s.l. (Campanulaceae). Taxon, 2019, 68, 340-369.</li> <li>Divergent selection and genetic structure of Sideritis scardica populations from southern Balkan Peninsula as revealed by AFLP fingerprinting. Scientific Reports, 2019, 9, 12767.</li> <li>Optimal Use of RAPD Markers for Identifying Varieties in Olive (Olea europaea L.) Germplasm</li> </ul> | 1.2<br>0.7<br>3.3 | 21<br>21<br>21 |

| #   | Article                                                                                                                                                                                                               | IF                 | CITATIONS           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 91  | Utility of EST-SNP Markers for Improving Management and Use of Olive Genetic Resources: A Case Study at the Worldwide Olive Germplasm Bank of Córdoba. Plants, 2022, 11, 921.                                         | 3.5                | 20                  |
| 92  | Brief communication. New isozyme loci in faba bean (Vicia faba L.): genetic analysis and mapping using trisomics. Journal of Heredity, 1998, 89, 271-275.                                                             | 2.4                | 18                  |
| 93  | Chemical Diversity of the Natural Populations of Dalmatian Pyrethrum (Tanacetum) Tj ETQq1 1 0.784314 rgBT /C                                                                                                          | )verlock 10<br>2.1 | 0 Tf 50 662 1<br>18 |
| 94  | Campanula teutana, a new isophyllous Campanula (Campanulaceae) from the Adriatic region.<br>Phytotaxa, 2014, 162, 1.                                                                                                  | 0.3                | 18                  |
| 95  | Causes and consequences of contrasting genetic structure in sympatrically growing and closely related species. AoB PLANTS, 2015, 7, plv106.                                                                           | 2.3                | 18                  |
| 96  | Genetic diversity and morphological variability in the Balkan endemic <i>Campanula<br/>secundiflora s.l.</i> (Campanulaceae). Botanical Journal of the Linnean Society, 2016, 180, 64-88.                             | 1.6                | 18                  |
| 97  | Morphological, genetic and epigenetic aspects of homoploid hybridization between Salvia officinalis<br>L. and Salvia fruticosa Mill Scientific Reports, 2019, 9, 3276.                                                | 3.3                | 18                  |
| 98  | Pyrethrin from Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.): biosynthesis,<br>biological activity, methods of extraction and determination. Phytochemistry Reviews, 2021, 20,<br>875-905.      | 6.5                | 18                  |
| 99  | Identification of QTLs for alpha acid content and yield in hop (Humulus Lupulus L.). Euphytica, 2009, 170, 141-154.                                                                                                   | 1.2                | 17                  |
| 100 | Intraspecific Variation of <i>Chiliadenus iphionoides</i> Essential Oil in Israel. Chemistry and Biodiversity, 2011, 8, 1065-1082.                                                                                    | 2.1                | 16                  |
| 101 | CURRENT STATUS OF CONSERVATION, EVALUATION AND USEFULNESS OF WILD OLIVE GERMPLASM. Acta<br>Horticulturae, 2014, , 515-519.                                                                                            | 0.2                | 15                  |
| 102 | Pollen-mediated gene flow and fine-scale spatial genetic structure in <i>Olea<br/>europaea</i> subsp. <i>europaea</i> var. <i>sylvestris</i> . Annals of Botany, 2017, 119, mcw246.                                   | 2.9                | 15                  |
| 103 | Intra-varietal variability and genetic relationships among the homonymic East Adriatic olive ( Olea) Tj ETQq1 1 0.7                                                                                                   | 784314 rgl<br>3.6  | 3T /Overlock<br>14  |
| 104 | Salvia officinalis survived in situ Pleistocene glaciation in â€refugia within refugia' as inferred from<br>AFLP markers. Plant Systematics and Evolution, 2020, 306, 1.                                              | 0.9                | 14                  |
| 105 | RAPD markers and black pine (Pinus nigra Arnold) intraspecies taxonomy - Evidence from the study of nine populations. Acta Societatis Botanicorum Poloniae, 2011, 72, 249-257.                                        | 0.8                | 14                  |
| 106 | Extent and pattern of genetic differentiation within and between European populations of<br><i>Phelipanche ramosa</i> revealed by amplified fragment length polymorphism analysis. Weed<br>Research, 2009, 49, 48-55. | 1.7                | 12                  |
| 107 | Intra-cultivar diversity in the Croatian olive cultivar, â€ <sup>-</sup> Lastovka'. Journal of Horticultural Science and<br>Biotechnology, 2011, 86, 305-311.                                                         | 1.9                | 12                  |
| 108 | <i>Campanula skanderbegii</i> : Molecular and Morphological Evidence of a New<br><i>Campanula</i> Species (Campanulaceae) Endemic to Albania. Systematic Botany, 2014, 39,<br>1250-1260.                              | 0.5                | 12                  |

Ζιατκο ΑατονιΆ‡

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genetic Relationships of Spanish Olive Cultivars Using RAPD Markers. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 948-951.                                                       | 1.0 | 12        |
| 110 | Comparative proteomic analysis of <i>Orobanche</i> and <i>Phelipanche</i> species inferred from seed proteins. Weed Research, 2009, 49, 81-87.                                                                             | 1.7 | 11        |
| 111 | Effects ofOcimumspp. essential oil onMonilinia laxa in vitro. Journal of Essential Oil Research, 2013, 25, 143-148.                                                                                                        | 2.7 | 11        |
| 112 | Assessment of the Origin and Diversity of Croatian Common Bean Germplasm Using Phaseolin Type, SSR<br>and SNP Markers and Morphological Traits. Plants, 2021, 10, 665.                                                     | 3.5 | 11        |
| 113 | Genetic diversity in Hordeum chilense Roem. et Schult. germplasm collection as determined by endosperm storage proteins. Genetic Resources and Crop Evolution, 2005, 52, 127-135.                                          | 1.6 | 10        |
| 114 | Genetic diversity in two variants of Orobanche gracilis Sm. [var. gracilis and var. deludens (Beck) A.<br>Pujadas] (Orobanchaceae) from different regions of Spain. Electronic Journal of Biotechnology, 2007,<br>10, 0-0. | 2.2 | 10        |
| 115 | High genetic diversity and possible evidence of a recent bottleneck in Adriatic bottlenose dolphins<br>(Tursiops truncatus). Mammalian Biology, 2011, 76, 339-344.                                                         | 1.5 | 10        |
| 116 | DetectingOrobanche species by using cpDNA diagnostic markers. Phytoparasitica, 2007, 35, 129-135.                                                                                                                          | 1.2 | 9         |
| 117 | Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program.<br>Frontiers in Plant Science, 2017, 8, 2203.                                                                             | 3.6 | 9         |
| 118 | Genetic structure of wild raspberry populations in the Central Balkans depends on their location and on their relationship to commercial cultivars. Scientia Horticulturae, 2019, 256, 108606.                             | 3.6 | 9         |
| 119 | An Overview of Key Factors Affecting Genomic Selection for Wheat Quality Traits. Plants, 2021, 10, 745.                                                                                                                    | 3.5 | 9         |
| 120 | Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica, 2018, 214, 1.                                                                   | 1.2 | 8         |
| 121 | Genetic diversity and structure of Fusarium oxysporum f.sp. lentis isolates from Iran, Syria and<br>Algeria. European Journal of Plant Pathology, 2019, 153, 1019-1029.                                                    | 1.7 | 8         |
| 122 | Population structure and adaptive variation of Helichrysum italicum (Roth) G. Don along eastern<br>Adriatic temperature and precipitation gradient. Scientific Reports, 2021, 11, 24333.                                   | 3.3 | 8         |
| 123 | The main Croatian olive cultivar, â€~Oblica', shows high morphological but low molecular diversity.<br>Journal of Horticultural Science and Biotechnology, 2009, 84, 345-349.                                              | 1.9 | 7         |
| 124 | Maize participatory breeding in Portugal: Comparison of farmer's and breeder's onâ€ <del>f</del> arm selection.<br>Plant Breeding, 2017, 136, 861-871.                                                                     | 1.9 | 7         |
| 125 | Towards the Well-Tempered Chloroplast DNA Sequences. Plants, 2021, 10, 1360.                                                                                                                                               | 3.5 | 7         |
| 126 | Phenotypic Diversity of Almond-Leaved Pear (Pyrus spinosa Forssk.) along Eastern Adriatic Coast.<br>Forests, 2021, 12, 1630.                                                                                               | 2.1 | 7         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Intra- and interpopulation variability and taxonomic status ofBerberis croaticaHorvat. Plant<br>Biosystems, 2009, 143, 40-46.                                                                                        | 1.6 | 6         |
| 128 | Phylogeography of Campanula fenestrellata s.l. (Campanulaceae) in the northern Adriatic. Plant<br>Systematics and Evolution, 2020, 306, 1.                                                                           | 0.9 | 6         |
| 129 | Effect of Hormonal Priming and Osmopriming on Germination of Winter Savory (Satureja montana L.)<br>Natural Population under Drought Stress. Agronomy, 2022, 12, 1288.                                               | 3.0 | 6         |
| 130 | Records and genetic diversity of striped dolphins ( Stenella coeruleoalba) from the Croatian coast of<br>the Adriatic Sea. Marine Biodiversity Records, 2009, 2, .                                                   | 1.2 | 5         |
| 131 | Phenotypic and alpha-acid content diversity of wild hop populations in Croatia. Plant, Soil and Environment, 2010, 56, 37-42.                                                                                        | 2.2 | 5         |
| 132 | New Microsatellite Markers forCampanula pyramidalis(Campanulaceae) and Cross-Amplification in Closely Related Species. Applications in Plant Sciences, 2015, 3, 1400117.                                             | 2.1 | 5         |
| 133 | Spatial distribution, niche ecology and conservation genetics of Degenia velebitica (Brassicaceae), a<br>narrow endemic species of the north-western Dinaric Alps. Plant Systematics and Evolution, 2020, 306,<br>1. | 0.9 | 5         |
| 134 | Accessing Ancestral Origin and Diversity Evolution by Net Divergence of an Ongoing Domestication<br>Mediterranean Olive Tree Variety. Frontiers in Plant Science, 2021, 12, 688214.                                  | 3.6 | 5         |
| 135 | High Genetic Diversity and Low Population Differentiation in Wild Hop (Humulus lupulus L.) from<br>Croatia. Applied Sciences (Switzerland), 2021, 11, 6484.                                                          | 2.5 | 5         |
| 136 | Essential Oils Chemical Variability of Seven Populations of Salvia Officinalis L. In North of Albania.<br>Macedonian Journal of Chemistry and Chemical Engineering, 2020, 39, 31.                                    | 0.6 | 5         |
| 137 | Grass pea natural variation reveals oligogenic resistance to <i>Fusarium oxysporum</i> f. sp.<br><i>pisi</i> . Plant Genome, 2021, 14, e20154.                                                                       | 2.8 | 5         |
| 138 | Morphological and Chemical Variation of Wild Sweet Chestnut (CastaneaÂsativa Mill.) Populations.<br>Forests, 2022, 13, 55.                                                                                           | 2.1 | 5         |
| 139 | Accumulation Patterns of Six Pyrethrin Compounds across the Flower Developmental<br>Stages—Comparative Analysis in Six Natural Dalmatian Pyrethrum Populations. Agronomy, 2022, 12, 252.                             | 3.0 | 5         |
| 140 | Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools. Journal of Experimental Botany, 2022, 73, 5089-5110.                                                  | 4.8 | 5         |
| 141 | Estimation of linkage in trisomic inheritance. Theoretical and Applied Genetics, 1998, 96, 513-518.                                                                                                                  | 3.6 | 4         |
| 142 | Genetic variability of Verbascum populations from metal polluted and unpolluted sites. Genetika, 2015, 47, 245-251.                                                                                                  | 0.4 | 4         |
| 143 | Microsatellite markers in common bean (Phaseolus vulgaris L.). Journal of Central European<br>Agriculture, 2017, 18, 902-917.                                                                                        | 0.6 | 4         |
| 144 | Chemical Characterization of Wild Growing <i>Origanum vulgare</i> Populations in Montenegro.<br>Natural Product Communications, 2018, 13, 1934578X1801301.                                                           | 0.5 | 4         |

| #   | ARTICLE                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Matrix solid-phase dispersion optimization for determination of pyrethrin content in Dalmatian<br>pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) by liquid chromatography. Industrial Crops<br>and Products, 2020, 145, 111999. | 5.2 | 4         |
| 146 | The Influence of a Seedling Recruitment Strategy and a Clonal Architecture on a Spatial Genetic<br>Structure of a Salvia brachyodon (Lamiaceae) Population. Plants, 2020, 9, 828.                                                          | 3.5 | 4         |
| 147 | Genetic diversity and structure analysis of Croatian garlic collection assessed by SSR markers. Folia<br>Horticulturae, 2021, 33, 157-171.                                                                                                 | 1.8 | 4         |
| 148 | Alive and kicking, or, living on borrowed time? – Microsatellite diversity in natural populations of<br>the endangered Ulmus minor Mill. sensu latissimo from Croatia. Acta Botanica Croatica, 2016, 75, 53-59.                            | 0.7 | 4         |
| 149 | How does Computer vision compare to standard colorimeter in assessing the seed coat color of common bean (Phaseolus vulgaris L.)?. Journal of Central European Agriculture, 2019, 20, 1169-1178.                                           | 0.6 | 4         |
| 150 | Expressional and positional candidate genes for resistance to Peyronellaea pinodes in pea. Euphytica, 2018, 214, 1.                                                                                                                        | 1.2 | 3         |
| 151 | High diversity of natural Dalmatian pyrethrum based on pyrethrin composition at intra- and interpopulation level. Phytochemistry, 2021, 192, 112934.                                                                                       | 2.9 | 3         |
| 152 | Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics.<br>Theoretical and Applied Genetics, 1996, 93, 1130-1138.                                                                                 | 3.6 | 3         |
| 153 | High Level of Phenotypic Differentiation of Common Yew (Taxus baccata L.) Populations in the<br>North-Western Part of the Balkan Peninsula. Forests, 2022, 13, 78.                                                                         | 2.1 | 3         |
| 154 | Phenotypic Variation in European Wild Pear (Pyrus pyraster (L.) Burgsd.) Populations in the<br>North-Western Part of the Balkan Peninsula. Plants, 2022, 11, 335.                                                                          | 3.5 | 3         |
| 155 | Population Variability of Almond-Leaved Willow (Salix triandra L.) Based on the Leaf Morphometry:<br>Isolation by Distance and Environment Explain Phenotypic Diversity. Forests, 2022, 13, 420.                                           | 2.1 | 3         |
| 156 | Development of Microsatellite Markers for Tanacetum cinerariifolium (Trevis.) Sch. Bip., a Plant with a Large and Highly Repetitive Genome. Plants, 2022, 11, 1778.                                                                        | 3.5 | 3         |
| 157 | Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 2021, 11, 832.                                                                                                | 4.0 | 2         |
| 158 | Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed<br>by Nuclear and Chloroplast Microsatellites. South-East European Forestry, 2018, 9, .                                               | 0.4 | 2         |
| 159 | Conservation of Medicinal and Aromatic Plants in Croatia. NATO Science for Peace and Security Series<br>C: Environmental Security, 2012, , 261-269.                                                                                        | 0.2 | 2         |
| 160 | Development and characterization of new polymorphic microsatellite markers for Degenia velebitica<br>(Degen) Hayek (Brassicaceae). Conservation Genetics Resources, 2014, 6, 409-411.                                                      | 0.8 | 1         |
| 161 | Physiological Responses of Basil (Ocimum Basilicum L.) Cultivars to Rhizophagus Irregularis<br>Inoculation under Low Phosphorus Availability. Plants, 2020, 9, 14.                                                                         | 3.5 | 1         |
| 162 | Fine-Scale Phylogeography of a Putative Secondary Contact Zone of the Land Snail <i>Cornu<br/>aspersum</i> (Gastropoda: Pulmonata: Helicidae) Along the Croatian Coast and Islands. American<br>Malacological Bulletin, 2014, 32, 62-73.   | 0.2 | 0         |

| #   | Article                                                                                                                                                        | IF                | CITATIONS          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 163 | Utjecaj predsjetvenih tretmana na klijanje sjemena nevena (Calendula officinalis L.) pri stresnim<br>uvjetim. Sjemenarstvo, 2021, 32, 25-38.                   | 0.2               | 0                  |
| 164 | Morphological and genetic diversity of Istrian garlic ecotypes. Acta Horticulturae, 2021, , 57-64.                                                             | 0.2               | 0                  |
| 165 | Gas exchange capacity of Croatian common bean landraces (Phaseolus vulgaris L.) is related to their origin and growth type. Journal of Elementology, 2018, , . | 0.2               | 0                  |
| 166 | Genetic, Population Features and Reproductive Success in Gymnocalycium Monvillei (Cactaceae) Along<br>an Elevation Gradient. SSRN Electronic Journal, 0, , .   | 0.4               | 0                  |
| 167 | The complete chloroplast genome of dalmatian pyrethrum ( <i>Tanacetum cinerariifolium</i> (Trevir.)) Tj ETQq1 1<br>Resources, 2022, 7, 775-777.                | l 0.784314<br>0.4 | ł rgBT /Overl<br>O |