David M Olszyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108145/publications.pdf Version: 2024-02-01

ΠΛΥΙΟ Μ ΟΙ \$778

#	Article	IF	CITATIONS
1	Biochar affects growth and shoot nitrogen in four crops for twoÂsoils. , 2020, 3, e20067.		8
2	Biochar Affects Essential Nutrients of Carrot Taproots and Lettuce Leaves. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 261-271.	1.0	5
3	A framework for optimizing hydrologic performance of green roof media. Ecological Engineering, 2019, 140, 105589.	3.6	20
4	A rapid-test for screening biochar effects on seed germination. Communications in Soil Science and Plant Analysis, 2018, 49, 2025-2041.	1.4	14
5	Plant reproduction is altered by simulated herbicide drift to constructed plant communities. Environmental Toxicology and Chemistry, 2017, 36, 2799-2813.	4.3	11
6	Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings. Ecotoxicology, 2015, 24, 1014-1027.	2.4	20
7	Effects of single and multiple applications of glyphosate or aminopyralid on simple constructed plant communities. Environmental Toxicology and Chemistry, 2014, 33, 2368-2378.	4.3	6
8	Effects of low levels of herbicides on prairie species of the Willamette Valley, Oregon. Environmental Toxicology and Chemistry, 2013, 32, 2542-2551.	4.3	14
9	The effects of glyphosate and aminopyralid on a multi-species plant field trial. Ecotoxicology, 2012, 21, 1771-1787.	2.4	29
10	Comparing effects of low levels of herbicides on greenhouse―and fieldâ€grown potatoes (<i>Solanum) Tj ETQ Toxicology and Chemistry, 2011, 30, 455-468.</i>	2q0 0 0 rgE 4.3	3T /Overlock 1 12
11	Potato (<i>Solanum tuberosum</i>) greenhouse tuber production as an assay for asexual reproduction effects from herbicides. Environmental Toxicology and Chemistry, 2010, 29, 111-121.	4.3	9
12	Phytotoxicity assay for seed production using <i>Brassica rapa</i> L. Integrated Environmental Assessment and Management, 2010, 6, 725-734.	2.9	11
13	Pea (<i>Pisum sativum</i>) seed production as an assay for reproductive effects due to herbicides. Environmental Toxicology and Chemistry, 2009, 28, 1920-1929.	4.3	15
14	Selecting and evaluating native plants for regionâ€specific phytotoxicity testing. Integrated Environmental Assessment and Management, 2008, 4, 105-117.	2.9	23
15	Can Artificial Soil be Used in the Vegetative Vigor Test for US Pesticide Registration. Integrated Environmental Assessment and Management, 2008, 4, 409.	2.9	3
16	Effects of Low Concentrations of Herbicides on Fullâ€5eason, Fieldâ€Grown Potatoes. Journal of Environmental Quality, 2008, 37, 2070-2082.	2.0	13
17	USING A GEOGRAPHIC INFORMATION SYSTEM TO IDENTIFY AREAS WITH POTENTIAL FOR OFF-TARGET PESTICIDE EXPOSURE. Environmental Toxicology and Chemistry, 2006, 25, 2250.	4.3	25
18	Xeromorphy increases in shoots of Pseudotsuga menziesii (Mirb.) Franco seedlings with exposure to elevated temperature but not elevated CO2. Trees - Structure and Function, 2005, 19, 552-563.	1.9	16

DAVID M OLSZYK

#	Article	IF	CITATIONS
19	Assessing the Risks to Non-Target Terrestrial Plants from Herbicides. J Agricultural Meteorology, 2004, 60, 221-242.	1.5	14
20	Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiologia Plantarum, 2003, 117, 352-358.	5.2	67
21	Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 2003, 9, 1038-1050.	9.5	67
22	Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Canadian Journal of Forest Research, 2003, 33, 269-278.	1.7	56
23	Internal temperature of Douglas-fir buds is altered at elevated temperature. Environmental and Experimental Botany, 1999, 41, 25-30. Morphogenesis of Douglas fir buds is altered at elevated temperature but not at elevated CO21Official	4.2	6
24	disclaimer: The information in this document has been funded wholly (or in part) by the US Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement of recommendation for use.1. Environmental	4.2	16
25	and Experimental Botany, 1998, 40, 159-172. Supplemental Ultravioletâ€B Radiation Does Not Reduce Growth or Grain Yield in Rice. Agronomy Journal, 1997, 89, 793-799.	1.8	16
26	Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiologia Plantarum, 1997, 101, 301-308.	5.2	145
27	A Versatile Sunâ€lit Controlledâ€Environment Facility for Studying Plant and Soil Processes. Journal of Environmental Quality, 1996, 25, 614-625.	2.0	84