Jean-Claude Martinou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107791/publications.pdf

Version: 2024-02-01

71 papers

17,106 citations

43 h-index 68 g-index

76 all docs

76 docs citations

76 times ranked 23509 citing authors

#	Article	IF	CITATIONS
1	Separation and determination of cysteine enantiomers in plasma after derivatization with 4-fluoro-7-nitrobenzofurazan. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114539.	1.4	8
2	Paradoxical neuronal hyperexcitability in a mouse model of mitochondrial pyruvate import deficiency. ELife, 2022, 11 , .	2.8	21
3	RNA Granules in the Mitochondria and Their Organization under Mitochondrial Stresses. International Journal of Molecular Sciences, 2021, 22, 9502.	1.8	23
4	The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genetics, 2021, 17, e1009873.	1.5	16
5	Visualization of Mitochondrial RNA Granules in Cultured Cells Using 5-Bromouridine Labeling. Methods in Molecular Biology, 2021, 2192, 69-73.	0.4	3
6	Development and validation of a chiral UHPLC-MS method for the analysis of cysteine enantiomers in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112841.	1.4	33
7	The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology, 2020, 18, 2.	1.7	34
8	The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules, 2020, 10, 1068.	1.8	65
9	Mitochondrial RNA granules are fluid condensates positioned by membrane dynamics. Nature Cell Biology, 2020, 22, 1180-1186.	4.6	39
10	In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way. Journal of Biological Chemistry, 2019, 294, 12581-12598.	1.6	33
11	Feasibility of neurochemically profiling mouse embryonic brain and its development in utero using $1\mathrm{H}$ MRS at $14.1\mathrm{\^{A}T}$. NMR in Biomedicine, $2019,32,$ e4 $163.$	1.6	1
12	Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl α-Ketoglutarate. Cell Reports, 2019, 27, 820-834.e9.	2.9	36
13	The yeast mitochondrial pyruvate carrier is a heteroâ€dimer in its functional state. EMBO Journal, 2019, 38, .	3.5	45
14	1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding. Nature Metabolism, 2019, 1, 996-1008.	5.1	15
15	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
16	Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function. ELife, 2018, 7, .	2.8	57
17	The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules. Journal of Biological Chemistry, 2017, 292, 4519-4532.	1.6	79
18	FASTKD1 and FASTKD4 have opposite effects on expression of specific mitochondrial RNAs, depending upon their endonuclease-like RAP domain. Nucleic Acids Research, 2017, 45, 6135-6146.	6.5	41

#	Article	IF	Citations
19	The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Research, 2017, 45, 10941-10947.	6.5	62
20	Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity. Clinical Cancer Research, 2017, 23, 6292-6304.	3.2	69
21	MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. Journal of Biological Chemistry, 2016, 291, 16448-16461.	1.6	30
22	TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Scientific Reports, 2016, 6, 19725.	1.6	39
23	Role of FAST Kinase Domains 3 (FASTKD3) in Post-transcriptional Regulation of Mitochondrial Gene Expression. Journal of Biological Chemistry, 2016, 291, 25877-25887.	1.6	37
24	Solange Desagher and Jean-Claude Martinou: Executioners of Cell Death. Trends in Cell Biology, 2016, 26, 560-562.	3.6	0
25	Channels and transporters in cell metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2359-2361.	1.9	3
26	The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2436-2442.	1.9	91
27	Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression. Journal of Cell Biology, 2016, 212, 611-614.	2.3	85
28	Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet. PLoS Genetics, 2016, 12, e1006056.	1.5	56
29	Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO Journal, 2015, 34, 911-924.	3.5	98
30	C11orf83, a Mitochondrial Cardiolipin-Binding Protein Involved in <i>bc</i> ₁ Complex Assembly and Supercomplex Stabilization. Molecular and Cellular Biology, 2015, 35, 1139-1156.	1.1	62
31	A Mitochondria-Specific Isoform of FASTK Is Present In Mitochondrial RNA Granules and Regulates Gene Expression and Function. Cell Reports, 2015, 10, 1110-1121.	2.9	77
32	Mechanism-Based Markers of Drug-Induced Liver Injury to Improve the Physiological Relevance and Predictivity of <i>In Vitro</i> Models. Applied in Vitro Toxicology, 2015, 1, 175-186.	0.6	5
33	Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect. Molecular Cell, 2015, 59, 491-501.	4.5	76
34	Mitochondrial pyruvate import and its effects on homeostasis. Current Opinion in Cell Biology, 2015, 33, 35-41.	2.6	57
35	Non-Microtubular Localizations of Microtubule-Associated Protein 6 (MAP6). PLoS ONE, 2014, 9, e114905.	1.1	10
36	A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Human Molecular Genetics, 2014, 23, 6345-6355.	1.4	63

#	Article	IF	Citations
37	TAT-RasGAP317–326-mediated tumor cell death sensitization can occur independently of Bax and Bak. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 719-733.	2.2	10
38	Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis. Chemistry and Physics of Lipids, 2014, 179, 70-74.	1.5	47
39	MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates. Cell Reports, 2014, 7, 971-981.	2.9	656
40	Specific Interaction with Cardiolipin Triggers Functional Activation of Dynamin-Related Protein 1. PLoS ONE, 2014, 9, e102738.	1.1	131
41	Where Killers Meet-Permeabilization of the Outer Mitochondrial Membrane during Apoptosis. Cold Spring Harbor Perspectives in Biology, 2013, 5, a011106-a011106.	2.3	72
42	TRAIL promotes membrane blebbing, detachment and migration of cells displaying a dysfunctional intrinsic pathway of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 324-336.	2.2	26
43	GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules. Cell Metabolism, 2013, 17, 399-410.	7.2	190
44	Intermembrane Space Proteome of Yeast Mitochondria. Molecular and Cellular Proteomics, 2012, 11, 1840-1852.	2.5	134
45	Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science, 2012, 337, 93-96.	6.0	588
46	Sensitization of (colon) cancer cells to death receptor related therapies. Cancer Biology and Therapy, 2012, 13, 458-466.	1.5	4
47	Mitochondria in Apoptosis: Bcl-2 Family Members and Mitochondrial Dynamics. Developmental Cell, 2011, 21, 92-101.	3.1	1,198
48	Expression of mitofusin 2R94Q in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A. Brain, 2010, 133, 1460-1469.	3.7	102
49	Membrane Remodeling Induced by the Dynamin-Related Protein Drp1 Stimulates Bax Oligomerization. Cell, 2010, 142, 889-901.	13.5	360
50	Mitochondrial dynamics and cancer. Seminars in Cancer Biology, 2009, 19, 50-56.	4.3	149
51	Autophagy: Evolutionary and pathophysiological insights. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1395-1396.	1.9	6
52	SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO Journal, 2009, 28, 1589-1600.	3.5	639
53	Mitochondrial Dynamics and Apoptosis: A Painful Separation. Developmental Cell, 2008, 15, 341-343.	3.1	37
54	Mitochondrial Dynamics: To be in Good Shape to Survive. Current Molecular Medicine, 2008, 8, 131-137.	0.6	62

#	Article	IF	CITATIONS
55	Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA. PLoS ONE, 2008, 3, e3257.	1.1	363
56	Inhibiting the Mitochondrial Fission Machinery Does Not Prevent Bax/Bak-Dependent Apoptosis. Molecular and Cellular Biology, 2006, 26, 7397-7408.	1.1	215
57	hFis1, a Novel Component of the Mammalian Mitochondrial Fission Machinery. Journal of Biological Chemistry, 2003, 278, 36373-36379.	1.6	569
58	Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Letters, 2003, 538, 53-59.	1.3	109
59	Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane. Journal of Biological Chemistry, 2003, 278, 41566-41571.	1.6	220
60	The Apoptotic Protein tBid Promotes Leakage by Altering Membrane Curvature. Journal of Biological Chemistry, 2002, 277, 32632-32639.	1.6	155
61	Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochemical Journal, 2002, 363, 547.	1.7	44
62	Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochemical Journal, 2002, 363, 547-552.	1.7	68
63	Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochemical and Biophysical Research Communications, 2002, 298, 744-749.	1.0	100
64	Direct addition of BimL to mitochondria does not lead to cytochromecrelease. FEBS Letters, 2002, 522, 29-34.	1.3	41
65	Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochemical Journal, 2000, 345, 271.	1.7	200
66	Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 2000, 10, 369-377.	3.6	1,739
67	Bid Induces the Oligomerization and Insertion of Bax into the Outer Mitochondrial Membrane. Molecular and Cellular Biology, 2000, 20, 929-935.	1.1	1,053
68	The Destabilization of Lipid Membranes Induced by the C-terminal Fragment of Caspase 8-cleaved Bid Is Inhibited by the N-terminal Fragment. Journal of Biological Chemistry, 2000, 275, 22713-22718.	1.6	119
69	Bid-induced Conformational Change of Bax Is Responsible for Mitochondrial Cytochrome c Release during Apoptosis. Journal of Cell Biology, 1999, 144, 891-901.	2.3	1,169
70	Inhibition of Bax Channel-Forming Activity by Bcl-2. Science, 1997, 277, 370-372.	6.0	1,004
71	Mechanisms of Mitochondrial Outer Membrane Permeabilization. Novartis Foundation Symposium, 0, , 170-182.	1.2	16