Rafael Fernandez-Chacon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107213/publications.pdf

Version: 2024-02-01

38 papers

5,359 citations

28 h-index 37 g-index

38 all docs 38 docs citations

38 times ranked 5901 citing authors

#	Article	IF	CITATIONS
1	Editorial on the Special Issue on SNARE Proteins: A Long Journey of Science in Brain Health and Disease. Neuroscience, 2019, 420, 1-3.	2.3	O
2	Loss of postnatal quiescence of neural stem cells through mTOR activation upon genetic removal of cysteine string protein- $\hat{l}\pm$. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8000-8009.	7.1	26
3	Presynaptic neurodegeneration: CSP- $\hat{l}\pm$ /DNAJC5 at the synaptic vesicle cycle and beyond. Current Opinion in Physiology, 2018, 4, 65-69.	1.8	5
4	Substantia nigra dopaminergic neurons and striatal interneurons are engaged in three parallel but interdependent postnatal neurotrophic circuits. Aging Cell, 2018, 17, e12821.	6.7	9
5	Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature, 2018, 560, 441-446.	27.8	113
6	Toward the Inner Nanostructure of a Secretory Vesicle. ACS Nano, 2017, 11, 3429-3432.	14.6	1
7	A <i> <scp>POGLUT</scp> 1 </i> mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Molecular Medicine, 2016, 8, 1289-1309.	6.9	84
8	Two for the Price of One: A Neuroprotective Chaperone Kit within NAD Synthase Protein NMNAT2. PLoS Biology, 2016, 14, e1002522.	5. 6	11
9	Different dynamin blockers interfere with distinct phases of synaptic endocytosis during stimulation in motoneurones. Journal of Physiology, 2015, 593, 2867-2888.	2.9	10
10	Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells. ACS Nano, 2013, 7, 6605-6618.	14.6	174
11	Motorneurons Require Cysteine String Protein-α to Maintain the Readily Releasable Vesicular Pool and Synaptic Vesicle Recycling. Neuron, 2012, 74, 151-165.	8.1	59
12	Increased Neurotransmitter Release at the Neuromuscular Junction in a Mouse Model of Polyglutamine Disease. Journal of Neuroscience, 2011, 31, 1106-1113.	3.6	39
13	Presynaptic dysfunction in Huntington's disease. Biochemical Society Transactions, 2010, 38, 488-492.	3.4	26
14	Cysteine String Protein-α Prevents Activity-Dependent Degeneration in GABAergic Synapses. Journal of Neuroscience, 2010, 30, 7377-7391.	3.6	75
15	Monitoring Synaptic Function at the Neuromuscular Junction of a Mouse Expressing SynaptopHluorin. Journal of Neuroscience, 2007, 27, 5422-5430.	3.6	49
16	Deletion of CASK in mice is lethal and impairs synaptic function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2525-2530.	7.1	189
17	CSPÂ-deficiency causes massive and rapid photoreceptor degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2926-2931.	7.1	80
18	Active zones for presynaptic plasticity in the brain. Molecular Psychiatry, 2005, 10, 185-200.	7.9	23

#	Article	IF	Citations
19	Presynaptic NMDA receptors mediate potentiation of neurotransmitter release. Molecular Psychiatry, 2005, 10, 131-131.	7.9	1
20	α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration. Cell, 2005, 123, 383-396.	28.9	895
21	Recycling and EH domain proteins at the synapse. Brain Research Reviews, 2005, 49, 416-428.	9.0	29
22	The Synaptic Vesicle Protein CSPα Prevents Presynaptic Degeneration. Neuron, 2004, 42, 237-251.	8.1	254
23	Examining Synaptotagmin 1 Function in Dense Core Vesicle Exocytosis under Direct Control of Ca2+. Journal of General Physiology, 2003, 122, 265-276.	1.9	100
24	Rab3D Is Not Required for Exocrine Exocytosis but for Maintenance of Normally Sized Secretory Granules. Molecular and Cellular Biology, 2002, 22, 6487-6497.	2.3	121
25	Structure/Function Analysis of Ca ²⁺ Binding to the C ₂ A Domain of Synaptotagmin 1. Journal of Neuroscience, 2002, 22, 8438-8446.	3.6	122
26	Synaptotagmin VII as a Plasma Membrane Ca2+ Sensor in Exocytosis. Neuron, 2001, 30, 459-473.	8.1	207
27	A Trimeric Protein Complex Functions as a Synaptic Chaperone Machine. Neuron, 2001, 31, 987-999.	8.1	196
28	Synaptotagmin I functions as a calcium regulator of release probability. Nature, 2001, 410, 41-49.	27.8	857
29	Novel SCAMPs Lacking NPF Repeats: Ubiquitous and Synaptic Vesicle-Specific Forms Implicate SCAMPs in Multiple Membrane-Trafficking Functions. Journal of Neuroscience, 2000, 20, 7941-7950.	3.6	79
30	SCAMP1 Function in Endocytosis. Journal of Biological Chemistry, 2000, 275, 12752-12756.	3.4	85
31	Analysis of SCAMP1 Function in Secretory Vesicle Exocytosis by Means of Gene Targeting in Mice. Journal of Biological Chemistry, 1999, 274, 32551-32554.	3.4	55
32	The Subcellular Localizations of Atypical Synaptotagmins III and VI. Journal of Biological Chemistry, 1999, 274, 18290-18296.	3.4	82
33	GENETICS OF SYNAPTIC VESICLE FUNCTION: Toward the Complete Functional Anatomy of an Organelle. Annual Review of Physiology, 1999, 61, 753-776.	13.1	171
34	The Making of Neurexins. Journal of Neurochemistry, 1998, 71, 1339-1347.	3.9	149
35	Oxygen sensing by ion channels and chemotransduction in single glomus cells Journal of General Physiology, 1996, 107, 133-143.	1.9	139
36	Cytosolic calcium facilitates release of secretory products after exocytotic vesicle fusion. FEBS Letters, 1995, 363, 221-225.	2.8	68

#	Article	IF	CITATIONS
37	Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10208-10211.	7.1	198
38	Release of secretory products during transient vesicle fusion. Nature, 1993, 363, 554-558.	27.8	578