Sarmila Tandukar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107044/publications.pdf Version: 2024-02-01

SADMILA TANDUKAD

#	Article	IF	CITATIONS
1	Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal. Science of the Total Environment, 2022, 824, 153816.	8.0	34
2	Occurrence and Reduction of Shiga Toxin-Producing Escherichia coli in Wastewaters in the Kathmandu Valley, Nepal. Water (Switzerland), 2022, 14, 2224.	2.7	0
3	Association between climatic and nonclimatic parameters and transmission of SARS-CoV-2 infection in Nepal. Environmental Disease, 2021, 6, 38.	0.1	2
4	Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens, 2021, 10, 798.	2.8	24
5	The COVIDâ€19 Pandemic Not Only Poses Challenges, but Also Opens Opportunities for Sustainable Transformation. Earth's Future, 2021, 9, e2021EF001996.	6.3	42
6	Virus reduction at wastewater treatment plants in Nepal. Environmental Challenges, 2021, 5, 100281.	4.2	3
7	Release of Antibiotic-Resistance Genes from Hospitals and a Wastewater Treatment Plant in the Kathmandu Valley, Nepal. Water (Switzerland), 2021, 13, 2733.	2.7	12
8	Possibility of Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) through Wastewater in Developing Countries. Water (Switzerland), 2021, 13, 3412.	2.7	3
9	Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Current Opinion in Environmental Science and Health, 2020, 17, 82-93.	4.1	126
10	Reduction of Pathogenic and Indicator Viruses at a Drinking Water Treatment Plant in Southern Louisiana, USA. Food and Environmental Virology, 2020, 12, 269-273.	3.4	3
11	Investigation of Shiga Toxin-Producing Escherichia coli in Groundwater, River Water, and Fecal Sources in the Kathmandu Valley, Nepal. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	5
12	Recycled water safety: Current status of traditional and emerging viral indicators. Current Opinion in Environmental Science and Health, 2020, 16, 62-72.	4.1	27
13	The Occurrence of Antibiotic Resistance Genes in an Urban River in Nepal. Water (Switzerland), 2020, 12, 450.	2.7	16
14	First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Science of the Total Environment, 2020, 743, 140621.	8.0	416
15	Reduction of Human Enteric and Indicator Viruses at a Wastewater Treatment Plant in Southern Louisiana, USA. Food and Environmental Virology, 2020, 12, 260-263.	3.4	13
16	Evaluation of CrAssphage Marker for Tracking Fecal Contamination in River Water in Nepal. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	12
17	Applicability of crAssphage, pepper mild mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater treatment. Scientific Reports, 2020, 10, 3616.	3.3	72
18	Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal. Heliyon, 2020. 6. e03313.	3.2	20

SARMILA TANDUKAR

#	Article	IF	CITATIONS
19	Prevalence of Arcobacter and Other Pathogenic Bacteria in River Water in Nepal. Water (Switzerland), 2019, 11, 1416.	2.7	14
20	Detection of Pathogenic Viruses, Pathogen Indicators, and Fecal-Source Markers within Tanker Water and Their Sources in the Kathmandu Valley, Nepal. Pathogens, 2019, 8, 81.	2.8	15
21	Performance Evaluation of Human-Specific Viral Markers and Application of Pepper Mild Mottle Virus and CrAssphage to Environmental Water Samples as Fecal Pollution Markers in the Kathmandu Valley, Nepal. Food and Environmental Virology, 2019, 11, 274-287.	3.4	36
22	Co-Infection by Waterborne Enteric Viruses in Children with Gastroenteritis in Nepal. Healthcare (Switzerland), 2019, 7, 9.	2.0	7
23	Prevalence and associated risk factors of Giardia duodenalis infection among school-going children in Nepal. Parasitology Research, 2018, 117, 287-293.	1.6	10
24	Identification of Human and Animal Fecal Contamination in Drinking Water Sources in the Kathmandu Valley, Nepal, Using Host-Associated Bacteroidales Quantitative PCR Assays. Water (Switzerland), 2018, 10, 1796.	2.7	29
25	Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 2018, 16, e2005396.	5.6	128
26	Development of a Quantitative PCR Assay for <i>Arcobacter</i> spp. and its Application to Environmental Water Samples. Microbes and Environments, 2018, 33, 309-316.	1.6	14
27	Presence of Human Enteric Viruses, Protozoa, and Indicators of Pathogens in the Bagmati River, Nepal. Pathogens, 2018, 7, 38.	2.8	32
28	Comprehensive Detection of Pathogenic Bacteria in Jar Water, Community Well Groundwater, and Environmental Water in the Kathmandu Valley, Nepal. Japanese Journal of Water Treatment Biology, 2018, 54, 65-72.	0.1	0
29	Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Science of the Total Environment, 2017, 601-602, 278-284.	8.0	44
30	Detection of Cryptosporidium parvum and Cyclospora cayetanensis infections among people living in a slum area in Kathmandu valley, Nepal. BMC Research Notes, 2017, 10, 464.	1.4	10
31	Molecular and Clinical Epidemiology of Salmonella Paratyphi A Isolated from Patients with Bacteremia in Nepal. American Journal of Tropical Medicine and Hygiene, 2017, 97, 1706-1709.	1.4	4
32	Comparative Genome Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Sequence Type 131 Strains from Nepal and Japan. MSphere, 2016, 1, .	2.9	8
33	Enteric parasitic infection among HIV-infected patients visiting Tribhuvan University Teaching Hospital, Nepal. BMC Research Notes, 2016, 9, 204.	1.4	9
34	Clinical Epidemiology and Molecular Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Nepal: Characteristics of Sequence Types 131 and 648. Antimicrobial Agents and Chemotherapy, 2015, 59, 3424-3432.	3.2	44
35	Bacterial meningitis in children under 15Âyears of age in Nepal. BMC Pediatrics, 2015, 15, 94.	1.7	32
36	Characterization of rotavirus causing acute diarrhoea in children in Kathmandu, Nepal, showing the dominance of serotype G12. Journal of Medical Microbiology, 2013, 62, 114-120.	1.8	33

#	Article	IF	CITATIONS
37	Prevalence of group A genotype human rotavirus among children with diarrhoea in Nepal, 2009–2011. WHO South-East Asia Journal of Public Health, 2012, 1, 432.	0.7	10
38	Infection of Cyclospora cayetanensis in children under 15 years of age in Kathmandu valley. Scientific World, 2011, 9, 86-89.	0.3	2