
Simona Marzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7106942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Prospective Phase III Randomized Trial of Hypofractionation Versus Conventional Fractionation in Patients With High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, 11-18.	0.8	243
2	Modeling of α/β for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer. Journal of Experimental and Clinical Cancer Research, 2009, 28, 117.	8.6	77
3	Analysis of toxicity in patients with high risk prostate cancer treated with intensity-modulated pelvic radiation therapy and simultaneous integrated dose escalation to prostate area. Radiotherapy and Oncology, 2007, 84, 148-155.	0.6	58
4	In vivo dosimetry with MOSFETs: Dosimetric characterization and first clinical results in intraoperative radiotherapy. International Journal of Radiation Oncology Biology Physics, 2005, 63, 952-960.	0.8	49
5	A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT. International Journal of Radiation Oncology Biology Physics, 2006, 65, 587-594.	0.8	47
6	Early radiationâ€induced changes evaluated by intravoxel incoherent motion in the major salivary glands. Journal of Magnetic Resonance Imaging, 2015, 41, 974-982.	3.4	44
7	Anatomical and Dose Changes of Gross Tumour Volume and Parotid Glands for Head and Neck Cancer Patients during Intensity-modulated Radiotherapy: Effect on the Probability of Xerostomia Incidence. Clinical Oncology, 2012, 24, e54-e62.	1.4	41
8	Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma. NMR in Biomedicine, 2013, 26, 1806-1814.	2.8	41
9	The prediction of the treatment response of cervical nodes using intravoxel incoherent motion diffusion-weighted imaging. European Journal of Radiology, 2017, 92, 93-102.	2.6	41
10	Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology, 2015, 57, 1269-1280.	2.2	37
11	Analysis of Salivary Flow and Dose–Volume Modeling of Complication Incidence in Patients With Head-and-Neck Cancer Receiving Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1252-1259.	0.8	36
12	The Role of PET [18F]FDOPA in Evaluating Low-grade Glioma. Anticancer Research, 2015, 35, 5117-22.	1.1	36
13	Relationships Between Rectal Wall Dose–Volume Constraints and Radiobiologic Indices of Toxicity for Patients With Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2007, 68, 41-49.	0.8	35
14	Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrastâ€enhanced MRI of soft tissue tumors. NMR in Biomedicine, 2016, 29, 6-14.	2.8	30
15	Dependence of apparent diffusion coefficient measurement on diffusion gradient direction and spatial position – A quality assurance intercomparison study of forty-four scanners for quantitative diffusion-weighted imaging. Physica Medica, 2018, 55, 135-141.	0.7	30
16	Setup verification and <i>in vivo</i> dosimetry during intraoperative radiation therapy (IORT) for prostate cancer. Medical Physics, 2007, 34, 3205-3210.	3.0	28
17	Characterization of cervical lymph-nodes using a multi-parametric and multi-modal approach for an early prediction of tumor response to chemo-radiotherapy. Physica Medica, 2016, 32, 1672-1680.	0.7	27
18	Radiation-induced parotid changes in oropharyngeal cancer patients: the role of early functional imaging and patientâ°'/treatment-related factors. Radiation Oncology, 2018, 13, 189.	2.7	27

SIMONA MARZI

#	Article	IF	CITATIONS
19	Correlation study between DKI and conventional DWI in brain and head and neck tumors. Magnetic Resonance Imaging, 2017, 42, 114-122.	1.8	25
20	Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation. Journal of Experimental and Clinical Cancer Research, 2012, 31, 33.	8.6	24
21	Feasibility study of reduced field of view diffusion-weighted magnetic resonance imaging in head and neck tumors. Acta Radiologica, 2017, 58, 292-300.	1.1	21
22	The role of MRI-derived depth of invasion in staging oral tongue squamous cell carcinoma: inter-reader and radiological–pathological agreement. Acta Radiologica, 2020, 61, 344-352.	1.1	21
23	MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation. Frontiers in Oncology, 2021, 11, 656918.	2.8	19
24	Influence of intensityâ€modulated radiation therapy technique on xerostomia and related quality of life in patients treated with intensityâ€modulated radiation therapy for nasopharyngeal cancer. Head and Neck, 2012, 34, 328-335.	2.0	17
25	Magnetic resonance tumor regression grade (MR-TRG) to assess pathological complete response following neoadjuvant radiochemotherapy in locally advanced rectal cancer. Oncotarget, 2017, 8, 114746-114755.	1.8	17
26	Phase I-II Study of Intraoperative Radiation Therapy (IORT) After Radical Prostatectomy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1049-1056.	0.8	16
27	Correlation study between intravoxel incoherent motion MRI and dynamic contrast-enhanced MRI in head and neck squamous cell carcinoma: Evaluation in primary tumors and metastatic nodes. Magnetic Resonance Imaging, 2017, 37, 1-8.	1.8	16
28	High brightness laser–plasma X-ray source at IFAM: Characterization and applications. Laser and Particle Beams, 2000, 18, 109-118.	1.0	15
29	Cervical lymphadenopathy: can the histogram analysis of apparent diffusion coefficient help to differentiate between lymphoma and squamous cell carcinoma in patients with unknown clinical primary tumor?. Radiologia Medica, 2019, 124, 19-26.	7.7	14
30	On the dependence of quantitative diffusion-weighted imaging on scanner system characteristics and acquisition parameters: A large multicenter and multiparametric phantom study with unsupervised clustering analysis. Physica Medica, 2021, 85, 98-106.	0.7	14
31	Quantitative analysis of CT-perfusion parameters in the evaluation of brain gliomas and metastases. Journal of Experimental and Clinical Cancer Research, 2009, 28, 38.	8.6	12
32	Diffusional kurtosis imaging in head and neck cancer: On the use of traceâ€weighted images to estimate indices of nonâ€Gaussian water diffusion. Medical Physics, 2018, 45, 5411-5419.	3.0	12
33	Intravoxel incoherent motion diffusion-weighted imaging for oropharyngeal squamous cell carcinoma: Correlation with human papillomavirus Status. European Journal of Radiology, 2019, 119, 108640.	2.6	12
34	Perfusion Computed Tomography (PCT) adopting different perfusion metrics: Recurrence of brain metastasis or radiation necrosis?. European Journal of Radiology, 2012, 81, 1246-1252.	2.6	11
35	Intensityâ€modulated pelvic radiation therapy and simultaneous integrated boost to the prostate area in patients with highâ€risk prostate cancer: a preliminary report of disease control. Cancer Medicine, 2014, 3, 1313-1321.	2.8	10
36	Diffusion kurtosis imaging in head and neck cancer: A correlation study with dynamic contrast enhanced MRI. Physica Medica, 2020, 73, 22-28.	0.7	9

SIMONA MARZI

#	Article	IF	CITATIONS
37	DVHs evaluation in brain metastases stereotactic radiotherapy treatment plans. Radiotherapy and Oncology, 2008, 87, 110-115.	0.6	8
38	Response on DCE-MRI predicts outcome of salvage radiotherapy for local recurrence after radical prostatectomy. Tumori, 2021, 107, 55-63.	1.1	8
39	Correlation between histogram-based DCE-MRI parameters and 18F-FDG PET values in oropharyngeal squamous cell carcinoma: Evaluation in primary tumors and metastatic nodes. PLoS ONE, 2020, 15, e0229611.	2.5	7
40	Comparison of rigid and deformable coregistration between mpMRI and CT images in radiotherapy of prostate bed cancer recurrence. Physica Medica, 2021, 92, 32-39.	0.7	7
41	Multiparametric MRI Evaluation of Oropharyngeal Squamous Cell Carcinoma. A Mono-Institutional Study. Journal of Clinical Medicine, 2021, 10, 3865.	2.4	6
42	A Multi-Variate framework to assess reliability and discrimination power of Bayesian estimation of Intravoxel Incoherent Motion parameters. Physica Medica, 2021, 89, 11-19.	0.7	5
43	Predictors of Outcome after (Chemo)Radiotherapy for Node-Positive Oropharyngeal Cancer: The Role of Functional MRI. Cancers, 2022, 14, 2477.	3.7	5
44	Refinement & validation of rectal wall dose volume objectives for prostate hypofractionation in 20 fractions. Clinical and Translational Radiation Oncology, 2020, 21, 91-97.	1.7	3
45	Prediction of Treatment Response of Cervical Nodes Using IVIM-DWI. International Journal of Radiation Oncology Biology Physics, 2016, 96, S69-S70.	0.8	1
46	Stereotactic body radiotherapy for T1 glottic cancer: dosimetric data in 27 consecutive patients. Tumori, 2021, 107, 030089162110004.	1.1	1
47	The Role of Patient- and Treatment-Related Factors and Early Functional Imaging in Late Radiation-Induced Xerostomia in Oropharyngeal Cancer Patients. Cancers, 2021, 13, 6296.	3.7	1
48	395 IMRT optimization: in search of a generalized computational approach. Radiotherapy and Oncology, 2005, 76, S174.	0.6	0
49	4013 POSTER Hypofractionation versus standard fraction in prostate cancer: analysis of the acute toxicity. European Journal of Cancer, Supplement, 2007, 5, 283.	2.2	0
50	5526 POSTER Xerostomia and related quality of life in patients treated with intensity modulated radiation therapy for nasopharyngeal cancer: initial report of a prospective study. European Journal of Cancer, Supplement, 2007, 5, 332.	2.2	0
51	Subjective and objective evaluation of xerostomia after intensity modulated radiation therapy (IMRT) of nasopharyngeal cancer: Preliminary results. Radiotherapy and Oncology, 2007, 82, S77-S78.	0.6	0
52	Early Radiation-Induced Changes of Parotid Glands at Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced MRI. International Journal of Radiation Oncology Biology Physics, 2017, 99, S81-S82.	0.8	0
53	TU-E-201C-04: Quantitative Analysis of Elastography Images in the Detection of Breast Cancer. Medical Physics, 2010, 37, 3405-3405.	3.0	0