Daniel Kaufman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7106538/publications.pdf

Version: 2024-02-01

59	4,790	29 h-index	57
papers	citations		g-index
63	63	63	4378 citing authors
all docs	does citations	times ranked	

#	Article	IF	CITATIONS
1	GABA Administration Ameliorates Sjogren's Syndrome in Two Different Mouse Models. Biomedicines, 2022, 10, 129.	3.2	5
2	Designing Personalized Antigen-Specific Immunotherapies for Autoimmune Diseasesâ€"The Case for Using Ignored Target Cell Antigen Determinants. Cells, 2022, 11, 1081.	4.1	3
3	Homotaurine limits the spreading of T cell autoreactivity within the CNS and ameliorates disease in a model of multiple sclerosis. Scientific Reports, 2021, 11, 5402.	3.3	16
4	GABAA-Receptor Agonists Limit Pneumonitis and Death in Murine Coronavirus-Infected Mice. Viruses, 2021, 13, 966.	3.3	21
5	GABAB-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice. Biomedicines, 2021, 9, 43.	3.2	9
6	GABA molecules made by B cells can dampen antitumour responses. Nature, 2021, 599, 374-376.	27.8	3
7	A Clinically Applicable Positive Allosteric Modulator of GABA Receptors Promotes Human β-Cell Replication and Survival as well as GABA's Ability to Inhibit Inflammatory T Cells. Journal of Diabetes Research, 2019, 2019, 1-7.	2.3	17
8	Increased risk for T cell autoreactivity to ß-cell antigens in the mice expressing the Avy obesity-associated gene. Scientific Reports, 2019, 9, 4269.	3.3	1
9	Homotaurine Treatment Enhances CD4+ and CD8+ Regulatory T Cell Responses and Synergizes with Low-Dose Anti-CD3 to Enhance Diabetes Remission in Type 1 Diabetic Mice. ImmunoHorizons, 2019, 3, 498-510.	1.8	21
10	Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Scientific Reports, 2018, 8, 16555.	3.3	33
11	Clinically applicable GABA receptor positive allosteric modulators promote ß-cell replication. Scientific Reports, 2017, 7, 374.	3.3	18
12	Repurposing Lesogaberan to Promote Human Islet Cell Survival and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cell Replication. Journal of Diabetes Research, 2017, 2017, 1-7.	2.3	9
13	Combined Therapy With GABA and Proinsulin/Alum Acts Synergistically to Restore Long-term Normoglycemia by Modulating T-Cell Autoimmunity and Promoting Â-Cell Replication in Newly Diabetic NOD Mice. Diabetes, 2014, 63, 3128-3134.	0.6	39
14	Bacillus Calmette-Guerin vaccine-mediated neuroprotection is associated with regulatory T-cell induction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Journal of Neuroscience Research, 2013, 91, 1292-1302.	2.9	54
15	\hat{l}^3 -Aminobutyric Acid Regulates Both the Survival and Replication of Human \hat{l}^2 -Cells. Diabetes, 2013, 62, 3760-3765.	0.6	88
16	Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization. Journal of Neuroimmunology, 2012, 247, 1-8.	2.3	37
17	Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis. Autoimmunity, 2011, 44, 465-470.	2.6	87
18	A Potential Role for Shed Soluble Major Histocompatibility Class I Molecules as Modulators of Neurite Outgrowth. PLoS ONE, 2011, 6, e18439.	2.5	29

#	Article	IF	CITATIONS
19	Oral Treatment with \hat{I}^3 -Aminobutyric Acid Improves Glucose Tolerance and Insulin Sensitivity by Inhibiting Inflammation in High Fat Diet-Fed Mice. PLoS ONE, 2011, 6, e25338.	2.5	156
20	Enhanced neuronal expression of major histocompatibility complex class I leads to aberrations in neurodevelopment and neurorepair. Journal of Neuroimmunology, 2011, 232, 8-16.	2.3	31
21	Transgenic mice with enhanced neuronal major histocompatibility complex class I expression recover locomotor function better after spinal cord injury. Journal of Neuroscience Research, 2011, 89, 365-372.	2.9	19
22	Major histocompatibility complex class I-mediated inhibition of neurite outgrowth from peripheral nerves. Immunology Letters, 2011, 135, 118-123.	2.5	23
23	Multimodality Imaging of Â-Cells in Mouse Models of Type 1 and 2 Diabetes. Diabetes, 2011, 60, 1383-1392.	0.6	31
24	BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease. PLoS ONE, 2011, 6, e16610.	2.5	52
25	Combining Antigen-Based Therapy with GABA Treatment Synergistically Prolongs Survival of Transplanted ß-Cells in Diabetic NOD Mice. PLoS ONE, 2011, 6, e25337.	2.5	39
26	Neurons Preferentially Respond to Self-MHC Class I Allele Products Regardless of Peptide Presented. Journal of Immunology, 2010, 184, 816-823.	0.8	23
27	Transgenically Induced GAD Tolerance Curtails the Development of Early β-Cell Autoreactivities but Causes the Subsequent Development of Supernormal Autoreactivities to Other β-Cell Antigens. Diabetes, 2009, 58, 2843-2850.	0.6	7
28	Antigen-Based Therapy for the Treatment of Type 1 Diabetes. Diabetes, 2009, 58, 1939-1946.	0.6	38
29	Design, Synthesis, and Antihepatocellular Carcinoma Activity of Nitric Oxide Releasing Derivatives of Oleanolic Acid. Journal of Medicinal Chemistry, 2008, 51, 4834-4838.	6.4	97
30	Noninvasive imaging of islet grafts using positron-emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11294-11299.	7.1	63
31	B Cells Are Crucial for Determinant Spreading of T Cell Autoimmunity among \hat{l}^2 Cell Antigens in Diabetes-Prone Nonobese Diabetic Mice. Journal of Immunology, 2006, 176, 2654-2661.	0.8	59
32	Long-Term Monitoring of Transplanted Islets Using Positron Emission Tomography. Molecular Therapy, 2006, 14, 851-856.	8.2	37
33	Antigen-Based Therapies Using Ignored Determinants of \hat{l}^2 Cell Antigens Can More Effectively Inhibit Late-Stage Autoimmune Disease in Diabetes-Prone Mice. Journal of Immunology, 2005, 175, 1991-1999.	0.8	32
34	\hat{l}^3 -Aminobutyric Acid Inhibits T Cell Autoimmunity and the Development of Inflammatory Responses in a Mouse Type 1 Diabetes Model. Journal of Immunology, 2004, 173, 5298-5304.	0.8	192
35	A Salen-Manganese Catalytic Free Radical Scavenger Inhibits Type 1 Diabetes and Islet Allograft Rejection. Diabetes, 2004, 53, 2574-2580.	0.6	21
36	Bioluminescent Monitoring of Islet Graft Survival after Transplantation. Molecular Therapy, 2004, 9, 428-435.	8.2	98

3

#	Article	IF	Citations
37	Memory and effector T cells modulate subsequently primed immune responses to unrelated antigens. Cellular Immunology, 2003, 224, 74-85.	3.0	8
38	Murder mysteries in type 1 diabetes. Nature Medicine, 2003, 9, 161-162.	30.7	8
39	Antigen-Based Immunotherapy Drives the Precocious Development of Autoimmunity. Journal of Immunology, 2002, 169, 6564-6569.	0.8	24
40	Lipopolysaccharide-Activated B Cells Down-Regulate Th1 Immunity and Prevent Autoimmune Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2001, 167, 1081-1089.	0.8	367
41	The Frequency of High Avidity T Cells Determines the Hierarchy of Determinant Spreading. Journal of Immunology, 2001, 166, 7144-7150.	0.8	70
42	Antigen-based immunotherapy for autoimmune disease: from animal models to humans?. Trends in Immunology, 1999, 20, 190-195.	7.5	28
43	GABAA receptors mediate inhibition of T cell responses. Journal of Neuroimmunology, 1999, 96, 21-28.	2.3	155
44	Antisense oligonucleotides to C-fos reduce postictal seizure susceptibility following fully kindled seizures in rats. Neuroscience Letters, 1999, 268, 143-146.	2.1	3
45	Infectious Th1 and Th2 autoimmunity in diabetes-prone mice. Immunological Reviews, 1998, 164, 119-127.	6.0	62
46	In vivo administration of c-Fos antisense oligonucleotides accelerates amygdala kindling. Neuroscience Letters, 1998, 241, 111-114.	2.1	11
47	Association of Alcohol or Other Drug Dependence with Alleles of the ?? Opioid Receptor Gene (OPRM1). Alcoholism: Clinical and Experimental Research, 1998, 22, 1359.	2.4	0
48	Determinant Spreading of  T Helper Cell 2 (Th2) Responses to Pancreatic Islet Autoantigens. Journal of Experimental Medicine, 1997, 186, 2039-2043.	8.5	127
49	Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes–prone mice. Nature Medicine, 1996, 2, 1348-1353.	30.7	249
50	Glutamate Decarboxylase, GABA and Autoimmunity. , 1996, , 23-30.		0
51	Characterization of the Murine \hat{l} Opioid Receptor Gene. Journal of Biological Chemistry, 1995, 270, 15877-15883.	3.4	70
52	Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase. Visual Neuroscience, 1994, 11, 135-142.	1.0	83
53	Localization of the δ-Opioid Receptor Gene to Mouse Chromosome 4 by Linkage Analysis. Genomics, 1994, 19, 405-406.	2.9	13
54	Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature, 1993, 366, 69-72.	27.8	1,125

#	ARTICLE	IF	CITATION
55	Cloning and sequence analysis of a murine cDNA encoding glutamate decarboxylase (GAD65). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 157-160.	2.4	28
56	Two Forms of the γâ€Aminobutyric Acid Synthetic Enzyme Glutamate Decarboxylase Have Distinct Intraneuronal Distributions and Cofactor Interactions. Journal of Neurochemistry, 1991, 56, 720-723.	3.9	758
57	Detection of point mutations associated with genetic diseases by an exon scanning technique. Genomics, 1990, 8, 656-663.	2.9	21
58	Assignment of the rhodopsin gene to human chromosome three, region 3q21–3q24 by <i>in situ</i> i>hybridization studies. Current Eye Research, 1986, 5, 797-798.	1.5	34
59	Linkage Analysis in a Family with Dominantly Inherited Torsion Dystonia: Exclusion of the Pro-Opiomelanocortin and Glutamic Acid Decarboxylase Genes and Other Chromosomal Regions Using DNA Polymorphisms. Journal of Neurogenetics, 1986, 3, 159-175.	1.4	24