Ke R Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7106237/publications.pdf Version: 2024-02-01

KE D YANG

#	Article	IF	CITATIONS
1	High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, <i>Synechocystis</i> sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	58
2	Glycerol binding at the narrow channel of photosystem II stabilizes the low-spin S2 state of the oxygen-evolving complex. Photosynthesis Research, 2022, , 1.	2.9	1
3	ls Deprotonation of the Oxygen-Evolving Complex of Photosystem II during the S ₁ → S ₂ Transition Suppressed by Proton Quantum Delocalization?. Journal of the American Chemical Society, 2021, 143, 8324-8332.	13.7	21
4	Development of an Enantioselective Synthesis of (â^')-Euonyminol. Journal of Organic Chemistry, 2021, 86, 17011-17035.	3.2	6
5	Understanding the Separation Mechanism of C2H6/C2H4 on Zeolitic Imidazolate Framework ZIF-7 by Periodic DFT Investigations. Journal of Physical Chemistry C, 2020, 124, 256-266.	3.1	9
6	Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nature Chemistry, 2020, 12, 82-89.	13.6	189
7	<i>In Situ</i> Identification of Reaction Intermediates and Mechanistic Understandings of Methane Oxidation over Hematite: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2020, 142, 17119-17130.	13.7	59
8	Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. ACS Applied Materials & Interfaces, 2019, 11, 5616-5622.	8.0	46
9	Catalytic manganese oxide nanostructures for the reverse water gas shift reaction. Nanoscale, 2019, 11, 16677-16688.	5.6	31
10	Thermodynamics of the S ₂ -to-S ₃ state transition of the oxygen-evolving complex of photosystem II. Physical Chemistry Chemical Physics, 2019, 21, 20840-20848.	2.8	21
11	Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9, 924.	12.8	571
12	Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2902-2907.	7.1	229
13	Investigating the Role of Copper Oxide in Electrochemical CO ₂ Reduction in Real Time. ACS Applied Materials & amp; Interfaces, 2018, 10, 8574-8584.	8.0	207
14	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
15	Hydrophobic CuO Nanosheets Functionalized with Organic Adsorbates. Journal of the American Chemical Society, 2018, 140, 1824-1833.	13.7	59
16	End-On Bound Iridium Dinuclear Heterogeneous Catalysts on WO ₃ for Solar Water Oxidation. ACS Central Science, 2018, 4, 1166-1172.	11.3	69
17	Water-Nucleophilic Attack Mechanism for the Cu ^{II} (pyalk) ₂ Water-Oxidation Catalyst. ACS Catalysis, 2018, 8, 7952-7960.	11.2	37
18	Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides. Journal of Physical Chemistry C, 2017, 121, 14222-14227.	3.1	86

Ke R Yang

#	Article	IF	CITATIONS
19	Antimony Complexes for Electrocatalysis: Activity of a Mainâ€Group Element in Proton Reduction. Angewandte Chemie - International Edition, 2017, 56, 9111-9115.	13.8	51
20	Enantioselective Propargylation of Polyols and Desymmetrization of <i>meso</i> 1,2â€Diols by Copper/Borinic Acid Dual Catalysis. Angewandte Chemie - International Edition, 2017, 56, 7213-7217.	13.8	114
21	Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3578-3583.	7.1	90
22	Potential energy surfaces of quintet and singlet O ₄ . Journal of Chemical Physics, 2017, 147, 034301.	3.0	65
23	Antimony Complexes for Electrocatalysis: Activity of a Mainâ€Group Element in Proton Reduction. Angewandte Chemie, 2017, 129, 9239-9243.	2.0	12
24	Enantioselective Propargylation of Polyols and Desymmetrization of <i>meso</i> 1,2â€Diols by Copper/Borinic Acid Dual Catalysis. Angewandte Chemie, 2017, 129, 7319-7323.	2.0	23
25	Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy. Journal of the American Chemical Society, 2016, 138, 5511-5514.	13.7	63
26	Ferroceneâ€Promoted Longâ€Cycle Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 15038-15042.	2.0	11
27	Ferroceneâ€Promoted Longâ€Cycle Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 14818-14822.	13.8	46
28	Facet-Dependent Photoelectrochemical Performance of TiO ₂ Nanostructures: An Experimental and Computational Study. Journal of the American Chemical Society, 2015, 137, 1520-1529.	13.7	242
29	Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer. ACS Catalysis, 2015, 5, 2384-2390.	11.2	15
30	Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of ¹⁸ 0 Kinetic Isotope Effects. ACS Catalysis, 2015, 5, 7104-7113.	11.2	41
31	Anchor Points Reactive Potential for Bond-Breaking Reactions. Journal of Chemical Theory and Computation, 2014, 10, 924-933.	5.3	16
32	Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. Journal of Chemical Theory and Computation, 2014, 10, 102-121.	5.3	65
33	Photodissociation Dynamics of Phenol: Multistate Trajectory Simulations including Tunneling. Journal of the American Chemical Society, 2014, 136, 16378-16386.	13.7	102
34	Full-dimensional potentials and state couplings and multidimensional tunneling calculations for the photodissociation of phenol. Chemical Science, 2014, 5, 4661-4680.	7.4	90
35	Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms. Journal of Chemical Theory and Computation, 2014, 10, 2070-2084.	5.3	33
36	Quantum Mechanical Fragment Methods Based on Partitioning Atoms or Partitioning Coordinates. Accounts of Chemical Research, 2014, 47, 2731-2738.	15.6	27

KE R YANG

#	Article	IF	CITATIONS
37	Quasiclassical Trajectory Analysis of the N2 + N2 Reaction Using a New Ab Initio Potential Energy Surface. , 2014, , .		10
38	New Pathways for Formation of Acids and Carbonyl Products in Low-Temperature Oxidation: The Korcek Decomposition of γ-Ketohydroperoxides. Journal of the American Chemical Society, 2013, 135, 11100-11114.	13.7	153
39	Global <i>ab initio</i> ground-state potential energy surface of N4. Journal of Chemical Physics, 2013, 139, 044309.	3.0	175
40	Direct diabatization of electronic states by the fourfold-way: Including dynamical correlation by multi-configuration quasidegenerate perturbation theory with complete active space self-consistent-field diabatic molecular orbitals. Chemical Physics Letters, 2013, 573, 84-89.	2.6	42
41	Which Ab Initio Wave Function Methods Are Adequate for Quantitative Calculations of the Energies of Biradicals? The Performance of Coupled-Cluster and Multi-Reference Methods Along a Single-Bond Dissociation Coordinate. Journal of Chemical Theory and Computation, 2013, 9, 418-431.	5.3	35
42	Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol. Journal of Chemical Theory and Computation, 2013, 9, 3612-3625.	5.3	61
43	Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: Delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT. Journal of Chemical Physics, 2011, 135, 044118.	3.0	57
44	Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. Journal of Chemical Physics, 2010, 132, 164117.	3.0	206