Jonathan J Fortney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105993/publications.pdf Version: 2024-02-01

IONATHAN LEOPTNEY

#	Article	IF	CITATIONS
1	Kepler Planet-Detection Mission: Introduction and First Results. Science, 2010, 327, 977-980.	12.6	2,848
2	The K2 Mission: Characterization and Early Results. Publications of the Astronomical Society of the Pacific, 2014, 126, 398-408.	3.1	1,344
3	PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM <i>KEPLER</i> . Astrophysical Journal, Supplement Series, 2012, 201, 15.	7.7	871
4	CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY <i>KEPLER</i> . II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA. Astrophysical Journal, 2011, 736, 19.	4.5	859
5	PLANETARY CANDIDATES OBSERVED BY <i>KEPLER</i> . III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA. Astrophysical Journal, Supplement Series, 2013, 204, 24.	7.7	823
6	A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 2016, 529, 59-62.	27.8	714
7	A map of the day–night contrast of the extrasolar planet HD 189733b. Nature, 2007, 447, 183-186.	27.8	650
8	Kepler-16: A Transiting Circumbinary Planet. Science, 2011, 333, 1602-1606.	12.6	608
9	ARCHITECTURE AND DYNAMICS OF <i>KEPLER</i> 'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS. Astrophysical Journal, Supplement Series, 2011, 197, 8.	7.7	593
10	A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature, 2011, 470, 53-58.	27.8	553
11	UNDERSTANDING THE MASS-RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION. Astrophysical Journal, 2014, 792, 1.	4.5	520
12	ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b. Astrophysical Journal, 2009, 699, 564-584.	4.5	475
13	<i>KEPLER</i> 'S FIRST ROCKY PLANET: KEPLER-10b. Astrophysical Journal, 2011, 729, 27.	4.5	473
14	VALIDATION OF <i>KEPLER</i> 'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS. Astrophysical Journal, 2014, 784, 45.	4.5	418
15	MASSES, RADII, AND ORBITS OF SMALL <i>KEPLER</i> PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS. Astrophysical Journal, Supplement Series, 2014, 210, 20.	7.7	418
16	INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2013, 774, 95.	4.5	409
17	THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY. Astrophysical Journal, 2013, 776, 2.	4.5	391
18	On the Luminosity of Young Jupiters. Astrophysical Journal, 2007, 655, 541-549.	4.5	388

#	Article	IF	CITATIONS
19	Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature, 2012, 481, 475-479.	27.8	385
20	CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST. Astrophysical Journal, 2016, 817, 17.	4.5	356
21	NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES. Astrophysical Journal, 2012, 756, 172.	4.5	342
22	Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities. Science, 2012, 337, 556-559.	12.6	335
23	HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND. Astrophysical Journal, 2012, 761, 59.	4.5	322
24	CHARACTERISTICS OF <i>KEPLER</i> PLANETARY CANDIDATES BASED ON THE FIRST DATA SET. Astrophysical Journal, 2011, 728, 117.	4.5	313
25	THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE <i>HUBBLE SPACE TELESCOPE </i> . Astrophysical Journal, 2012, 747, 35.	4.5	313
26	Kepler-47: A Transiting Circumbinary Multiplanet System. Science, 2012, 337, 1511-1514.	12.6	312
27	A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b. Astrophysical Journal Letters, 2014, 793, L27.	8.3	297
28	The Interior Structure, Composition, and Evolution ofÂGiant Planets. Space Science Reviews, 2010, 152, 423-447.	8.1	279
29	THE MASS–METALLICITY RELATION FOR GIANT PLANETS. Astrophysical Journal, 2016, 831, 64.	4.5	273
30	The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au. Astronomical Journal, 2019, 158, 13.	4.7	270
31	Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science, 2014, 346, 838-841.	12.6	266
32	3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b. Astrophysical Journal, 2012, 754, 22.	4.5	264
33	GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES. Astrophysical Journal, Supplement Series, 2014, 214, 25.	7.7	259
34	THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX. Astrophysical Journal, 2013, 768, 14.	4.5	253
35	INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE. Astrophysical Journal Letters, 2013, 776, L25.	8.3	250
36	Observations of Transiting Exoplanets with the James Webb Space Telescope (<i>JWST</i>). Publications of the Astronomical Society of the Pacific, 2014, 126, 1134-1173.	3.1	245

#	Article	IF	CITATIONS
37	TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS. Astrophysical Journal, 2016, 828, 22.	4.5	238
38	The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy. Monthly Notices of the Royal Astronomical Society, 2005, 364, 649-653.	4.4	235
39	From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context. Astronomy and Astrophysics, 2018, 617, A110.	5.1	230
40	Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST. Astrophysical Journal, 2017, 850, 121.	4.5	222
41	THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED. Astrophysical Journal Letters, 2011, 736, L29.	8.3	220
42	Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR. Astrophysical Journal, 2012, 745, 120.	4.5	218
43	MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS. Astrophysical Journal, 2012, 754, 135.	4.5	217
44	H ^{â^'} Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b. Astrophysical Journal Letters, 2018, 855, L30.	8.3	217
45	Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 2013, 340, 587-590.	12.6	213
46	A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION. Astrophysical Journal, 2015, 814, 66.	4.5	212
47	<i>SPITZER</i> SECONDARY ECLIPSES OF THE DENSE, MODESTLY-IRRADIATED, GIANT EXOPLANET HAT-P-\$20{m b}\$ USING PIXEL-LEVEL DECORRELATION. Astrophysical Journal, 2015, 805, 132.	4.5	212
48	A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS. Astrophysical Journal, 2013, 775, 80.	4.5	208
49	MULTIWAVELENGTH CONSTRAINTS ON THE DAY-NIGHT CIRCULATION PATTERNS OF HD 189733b. Astrophysical Journal, 2009, 690, 822-836.	4.5	204
50	THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA. Astrophysical Journal, 2015, 815, 110.	4.5	196
51	A sub-Mercury-sized exoplanet. Nature, 2013, 494, 452-454.	27.8	193
52	QUANTITATIVELY ASSESSING THE ROLE OF CLOUDS IN THE TRANSMISSION SPECTRUM OF GJ 1214b. Astrophysical Journal, 2013, 775, 33.	4.5	189
53	Alignment of the stellar spin with the orbits of a three-planet system. Nature, 2012, 487, 449-453.	27.8	184
54	Atmospheric Circulation of Hot Jupiters: Threeâ€dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing. Astrophysical Journal, 2008, 682, 559-576.	4.5	183

#	Article	IF	CITATIONS
55	Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b. Astrophysical Journal Letters, 2019, 887, L14.	8.3	183
56	HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance. Science, 2017, 356, 628-631.	12.6	175
57	A rocky composition for an Earth-sized exoplanet. Nature, 2013, 503, 381-384.	27.8	172
58	KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, <i>WARM-SPITZER</i> PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS. Astrophysical Journal, Supplement Series, 2011, 197, 7.	7.7	171
59	<i>HUBBLE SPACE TELESCOPE</i> NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B. Astrophysical Journal, 2014, 794, 155.	4.5	164
60	THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION. Astrophysical Journal, Supplement Series, 2011, 197, 14.	7.7	162
61	WATER CLOUDS IN Y DWARFS AND EXOPLANETS. Astrophysical Journal, 2014, 787, 78.	4.5	160
62	<i>SPITZER</i> PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 <i>μ</i> m. Astronomical Journal, 2017, 153, 68.	4.7	157
63	Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations. Astronomical Journal, 2018, 156, 17.	4.7	156
64	TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING. Astrophysical Journal, 2012, 754, 136.	4.5	153
65	ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b. Astrophysical Journal, 2013, 766, 95.	4.5	153
66	THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b. Astrophysical Journal, 2014, 790, 53.	4.5	152
67	A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nature Astronomy, 2019, 3, 813-821.	10.1	151
68	OBSERVATIONAL EVIDENCE FOR A METAL-RICH ATMOSPHERE ON THE SUPER-EARTH GJ1214b. Astrophysical Journal Letters, 2011, 731, L40.	8.3	148
69	DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS. Astrophysical Journal, 2013, 762, 24.	4.5	147
70	EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY. Astrophysical Journal, 2010, 724, 189-214.	4.5	146
71	ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES. Astrophysical Journal, 2013, 770, 131.	4.5	145
72	NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY. Astronomical Journal, 2016, 152, 203.	4.7	144

#	Article	IF	CITATIONS
73	THE NATURE OF THE ATMOSPHERE OF THE TRANSITING SUPER-EARTH GJ 1214b. Astrophysical Journal Letters, 2010, 716, L74-L79.	8.3	141
74	Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus, 2003, 164, 228-243.	2.5	140
75	Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nature Astronomy, 2020, 4, 951-956.	10.1	137
76	THE ATMOSPHERIC CIRCULATION OF A NINE-HOT-JUPITER SAMPLE: PROBING CIRCULATION AND CHEMISTRY OVER A WIDE PHASE SPACE. Astrophysical Journal, 2016, 821, 9.	4.5	134
77	THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS. Astrophysical Journal, 2012, 745, 3.	4.5	133
78	THE ATMOSPHERES OF EARTHLIKE PLANETS AFTER GIANT IMPACT EVENTS. Astrophysical Journal, 2014, 784, 27.	4.5	132
79	ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b. Astrophysical Journal, 2010, 720, 344-356.	4.5	131
80	3.6 AND 4.5 μm SPITZER PHASE CURVES OF THE HIGHLY IRRADIATED HOT JUPITERS WASP-19b AND HAT-P-7b. Astrophysical Journal, 2016, 823, 122.	4.5	129
81	ACCESS I. AN OPTICAL TRANSMISSION SPECTRUM OF GJ 1214b REVEALS A HETEROGENEOUS STELLAR PHOTOSPHERE. Astrophysical Journal, 2017, 834, 151.	4.5	128
82	BROADBAND TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH GJ 1214b SUGGESTS A LOW MEAN MOLECULAR WEIGHT ATMOSPHERE. Astrophysical Journal, 2011, 736, 78.	4.5	127
83	THE DISCOVERY OF ELLIPSOIDAL VARIATIONS IN THE <i>KEPLER</i> LIGHT CURVE OF HAT-P-7. Astrophysical Journal Letters, 2010, 713, L145-L149.	8.3	125
84	WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature, 2010, 463, 1054-1056.	27.8	122
85	FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS. Astronomical Journal, 2017, 153, 86.	4.7	122
86	AB INITIO EQUATIONS OF STATE FOR HYDROGEN (H-REOS.3) AND HELIUM (He-REOS.3) AND THEIR IMPLICATIONS FOR THE INTERIOR OF BROWN DWARFS. Astrophysical Journal, Supplement Series, 2014, 215, 21.	7.7	121
87	Bayesian Analysis of Hot-Jupiter Radius Anomalies: Evidence for Ohmic Dissipation?. Astronomical Journal, 2018, 155, 214.	4.7	121
88	NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b. Astrophysical Journal, 2014, 796, 66.	4.5	120
89	Measuring the Oblateness and Rotation of Transiting Extrasolar Giant Planets. Astrophysical Journal, 2003, 588, 545-556.	4.5	118
90	THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b. Astrophysical Journal, 2009, 703, 769-784.	4.5	116

#	Article	IF	CITATIONS
91	THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA. Astrophysical Journal, 2015, 801, 86.	4.5	116
92	The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium. Astrophysical Journal, 2021, 920, 85.	4.5	114
93	THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION. Astrophysical Journal, 2015, 801, 95.	4.5	113
94	THE IMPACT OF NON-UNIFORM THERMAL STRUCTURE ON THE INTERPRETATION OF EXOPLANET EMISSION SPECTRA. Astrophysical Journal, 2016, 829, 52.	4.5	113
95	USING STAR SPOTS TO MEASURE THE SPIN-ORBIT ALIGNMENT OF TRANSITING PLANETS. Astrophysical Journal Letters, 2011, 740, L10.	8.3	112
96	NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN <i>Ks</i> , <i>H</i> , AND <i>J</i> . Astronomical Journal, 2011, 141, 30.	4.7	110
97	ATMOSPHERIC CHARACTERIZATION OF THE HOT JUPITER KEPLER-13Ab. Astrophysical Journal, 2014, 788, 92.	4.5	110
98	Characterizing 51 Eri b from 1 to 5Âμm: A Partly Cloudy Exoplanet. Astronomical Journal, 2017, 154, 10.	4.7	110
99	A STUDY OF THE DIVERSE T DWARF POPULATION REVEALED BY <i>WISE</i> . Astrophysical Journal, Supplement Series, 2013, 205, 6.	7.7	107
100	KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS. Astrophysical Journal, 2013, 766, 40.	4.5	106
101	Transit Detectability of Ring Systems around Extrasolar Giant Planets. Astrophysical Journal, 2004, 616, 1193-1203.	4.5	105
102	VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND. Astrophysical Journal, 2016, 832, 191.	4.5	105
103	KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM. Astrophysical Journal, Supplement Series, 2011, 197, 5.	7.7	103
104	Phase Curves of WASP-33b and HD 149026b and a New Correlation between Phase Curve Offset and Irradiation Temperature. Astronomical Journal, 2018, 155, 83.	4.7	103
105	UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, GI 570D AND HD 3651B. Astrophysical Journal, 2015, 807, 183.	4.5	101
106	A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b. Astrophysical Journal, 2013, 778, 184.	4.5	100
107	The Transiting Exoplanet Community Early Release Science Program for <i>JWST</i> . Publications of the Pacific, 2018, 130, 114402.	3.1	100
108	ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2065-2087.	4.4	99

#	Article	IF	CITATIONS
109	Transiting Exoplanet Studies and Community Targets for <i>JWST</i> 's Early Release Science Program. Publications of the Astronomical Society of the Pacific, 2016, 128, 094401.	3.1	98
110	ON THE CARBON-TO-OXYGEN RATIO MEASUREMENT IN NEARBY SUN-LIKE STARS: IMPLICATIONS FOR PLANET FORMATION AND THE DETERMINATION OF STELLAR ABUNDANCES. Astrophysical Journal Letters, 2012, 747, L27.	8.3	97
111	3.6 AND 4.5 <i>î¼</i> m PHASE CURVES OF THE HIGHLY IRRADIATED ECCENTRIC HOT JUPITER WASP-14b. Astrophysical Journal, 2015, 811, 122.	4.5	97
112	Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets. Astrophysical Journal Letters, 2017, 838, L9.	8.3	95
113	Characterizing Earth Analogs in Reflected Light: Atmospheric Retrieval Studies for Future Space Telescopes. Astronomical Journal, 2018, 155, 200.	4.7	94
114	Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets. Astrophysical Journal, 2004, 608, 1039-1049.	4.5	93
115	WARM <i>SPITZER</i> PHOTOMETRY OF THE TRANSITING EXOPLANETS CoRoT-1 AND CoRoT-2 AT SECONDARY ECLIPSE. Astrophysical Journal, 2011, 726, 95.	4.5	92
116	<i>Spitzer</i> /MIPS 24 μm OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, ANI A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS. Astrophysical Journal, 2012, 752, 81.) 4.5	92
117	FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES. Astrophysical Journal, 2010, 725, 1226-1241.	4.5	91
118	Resolving the Surfaces of Extrasolar Planets with Secondary Eclipse Light Curves. Astrophysical Journal, 2006, 649, 1020-1027.	4.5	89
119	PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TRES-2 SYSTEM. Astrophysical Journal, 2012, 761, 53.	4.5	89
120	A SEARCH FOR WATER IN THE ATMOSPHERE OF HAT-P-26b USING LDSS-3C. Astrophysical Journal, 2016, 817, 141.	4.5	86
121	MEASUREMENT OF SPIN-ORBIT MISALIGNMENT AND NODAL PRECESSION FOR THE PLANET AROUND PRE-MAIN-SEQUENCE STAR PTFO 8-8695 FROM GRAVITY DARKENING. Astrophysical Journal, 2013, 774, 53.	4.5	84
122	NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE. Astrophysical Journal, 2010, 717, 1084-1091.	4.5	82
123	The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b. Monthly Notices of the Royal Astronomical Society, 2010, 407, 910-922.	4.4	82
124	DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER. Astrophysical Journal, Supplement Series, 2011, 197, 9.	7.7	82
125	K2-97b: A (RE-?)INFLATED PLANET ORBITING A RED GIANT STAR. Astronomical Journal, 2016, 152, 185.	4.7	82
126	The Intrinsic Temperature and Radiative–Convective Boundary Depth in the Atmospheres of Hot Jupiters. Astrophysical Journal Letters, 2019, 884, L6.	8.3	82

#	Article	IF	CITATIONS
127	A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature, 2021, 598, 580-584.	27.8	82
128	Titan solar occultation observations reveal transit spectra of a hazy world. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9042-9047.	7.1	80
129	Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs. Astrophysical Journal, 2017, 848, 83.	4.5	80
130	Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b. Nature Astronomy, 2018, 2, 220-227.	10.1	79
131	TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE <i>JAMES WEBB SPACE TELESCOPE </i> . Astrophysical Journal, 2011, 727, 65.	4.5	78
132	NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A <i>Ks</i> BAND DETECTION AND AN <i>H</i> BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE. Astrophysical Journal, 2010, 718, 920-927.	4.5	77
133	SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM <i>SPITZER</i> . Astrophysical Journal, 2011, 727, 23.	4.5	77
134	DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION. Astrophysical Journal, 2013, 770, 120.	4.5	77
135	RE-INFLATED WARM JUPITERS AROUND RED GIANTS. Astrophysical Journal, 2016, 818, 4.	4.5	77
136	<i>KEPLER</i> OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS. Astrophysical Journal Letters, 2010, 713, L150-L154.	8.3	75
137	KEPLER-14b: A MASSIVE HOT JUPITER TRANSITING AN F STAR IN A CLOSE VISUAL BINARY. Astrophysical Journal, Supplement Series, 2011, 197, 3.	7.7	74
138	<i>SPITZER</i> IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b. Astrophysical Journal, 2010, 708, 498-504.	4.5	73
139	HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b. Astrophysical Journal, 2016, 827, 19.	4.5	73
140	Detection of Helium in the Atmosphere of the Exo-Neptune HAT-P-11b. Astrophysical Journal Letters, 2018, 868, L34.	8.3	73
141	Connecting Giant Planet Atmosphere and Interior Modeling: Constraints on Atmospheric Metal Enrichment. Astrophysical Journal Letters, 2019, 874, L31.	8.3	72
142	Statistical Characterization of Hot Jupiter Atmospheres Using Spitzer's Secondary Eclipses. Astronomical Journal, 2020, 159, 137.	4.7	72
143	<i>WARMSPITZER</i> PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b. Astrophysical Journal, 2013, 770, 102.	4.5	71
144	Climate of an ultra hot Jupiter. Astronomy and Astrophysics, 2019, 625, A136.	5.1	71

#	Article	IF	CITATIONS
145	An HST/WFC3 Thermal Emission Spectrum of the Hot Jupiter HAT-P-7b. Astronomical Journal, 2018, 156, 10.	4.7	70
146	The Precision of Mass Measurements Required for Robust Atmospheric Characterization of Transiting Exoplanets. Astrophysical Journal Letters, 2019, 885, L25.	8.3	70
147	Cassini Ring Seismology as a Probe of Saturn's Interior. I. Rigid Rotation. Astrophysical Journal, 2019, 871, 1.	4.5	70
148	WARM <i>SPITZER</i> OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b. Astrophysical Journal, 2012, 746, 111.	4.5	69
149	THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY*. Astrophysical Journal, 2016, 817, 166.	4.5	68
150	Exoplanet Reflected-light Spectroscopy with PICASO. Astrophysical Journal, 2019, 878, 70.	4.5	68
151	The cloudy shape of hot Jupiter thermal phase curves. Monthly Notices of the Royal Astronomical Society, 2020, 501, 78-108.	4.4	68
152	Analysis of <i>Spitzer</i> Spectra of Irradiated Planets: Evidence for Water Vapor?. Astrophysical Journal, 2007, 666, L45-L48.	4.5	67
153	NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY. Astrophysical Journal, 2015, 802, 28.	4.5	67
154	MULTIWAVELENGTH OBSERVATIONS OF THE CANDIDATE DISINTEGRATING SUB-MERCURY KIC 12557548B, ,. Astrophysical Journal, 2014, 786, 100.	4.5	66
155	A non-grey analytical model for irradiated atmospheres. Astronomy and Astrophysics, 2015, 574, A35.	5.1	65
156	Structure of exoplanets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12622-12627.	7.1	64
157	A COMPARISON OF NEAR-INFRARED PHOTOMETRY AND SPECTRA FOR Y DWARFS WITH A NEW GENERATION OF COOL CLOUDY MODELS. Astrophysical Journal, 2013, 763, 130.	4.5	63
158	Spitzer Phase Curves of KELT-1b and the Signatures of Nightside Clouds in Thermal Phase Observations. Astronomical Journal, 2019, 158, 166.	4.7	63
159	THE EVIL-MC MODEL FOR ELLIPSOIDAL VARIATIONS OF PLANET-HOSTING STARS AND APPLICATIONS TO THE HAT-P-7 SYSTEM. Astrophysical Journal, 2012, 751, 112.	4.5	62
160	LOW FALSE POSITIVE RATE OF <i>KEPLER</i> CANDIDATES ESTIMATED FROM A COMBINATION OF <i>SPITZER</i> AND FOLLOW-UP OBSERVATIONS. Astrophysical Journal, 2015, 804, 59.	4.5	62
161	THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH <i>WARM-SPITZER</i> AND <i>KEPLER</i> . Astrophysical Journal, Supplement Series, 2011, 197, 11.	7.7	61
162	The Featureless Transmission Spectra of Two Super-puff Planets. Astronomical Journal, 2020, 159, 57.	4.7	61

#	Article	IF	CITATIONS
163	<i>>SPITZER</i> AND <i>z</i> ′ SECONDARY ECLIPSE OBSERVATIONS OF THE HIGHLY IRRADIATED TRANSITING BROWN DWARF KELT-1b. Astrophysical Journal, 2014, 783, 112.	4.5	60
164	DYNAMICAL CONSTRAINTS ON THE CORE MASS OF HOT JUPITER HAT-P-13B. Astrophysical Journal, 2016, 821, 26.	4.5	59
165	Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b. Astronomical Journal, 2017, 154, 95.	4.7	59
166	NEAR-INFRARED EMISSION SPECTRUM OF WASP-103B USING HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3*. Astronomical Journal, 2017, 153, 34.	4.7	58
167	Evidence for H2 Dissociation and Recombination Heat Transport in the Atmosphere of KELT-9b. Astrophysical Journal Letters, 2020, 888, L15.	8.3	57
168	CONSTRAINTS ON THE ATMOSPHERIC CIRCULATION AND VARIABILITY OF THE ECCENTRIC HOT JUPITER XO-3b. Astrophysical Journal, 2014, 794, 134.	4.5	56
169	EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES. Astrophysical Journal, 2015, 804, 94.	4.5	56
170	WARM <i>SPITZER</i> AND PALOMAR NEAR-IR SECONDARY ECLIPSE PHOTOMETRY OF TWO HOT JUPITERS: WASP-48b AND HAT-P-23b. Astrophysical Journal, 2014, 781, 109.	4.5	55
171	THE TRANSIT TRANSMISSION SPECTRUM OF A COLD GAS GIANT PLANET. Astrophysical Journal, 2015, 814, 154.	4.5	55
172	Beyond Equilibrium Temperature: How the Atmosphere/Interior Connection Affects the Onset of Methane, Ammonia, and Clouds in Warm Transiting Giant Planets. Astronomical Journal, 2020, 160, 288.	4.7	55
173	Probing potassium in the atmosphere of HD 80606b with tunable filter transit spectrophotometry from the Gran Telescopio Canarias. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2233-2250.	4.4	53
174	THE HUNT FOR PLANET NINE: ATMOSPHERE, SPECTRA, EVOLUTION, AND DETECTABILITY. Astrophysical Journal Letters, 2016, 824, L25.	8.3	53
175	Hot Jupiters: Origins, Structure, Atmospheres. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006629.	3.6	53
176	<i>SPITZER</i> SECONDARY ECLIPSE OBSERVATIONS OF FIVE COOL GAS GIANT PLANETS AND EMPIRICAL TRENDS IN COOL PLANET EMISSION SPECTRA. Astrophysical Journal, 2015, 810, 118.	4.5	52
177	Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey. Planetary and Space Science, 2019, 177, 104680.	1.7	50
178	SECONDARY ECLIPSE PHOTOMETRY OF THE EXOPLANET WASP-5b WITH WARM <i>SPITZER</i> . Astrophysical Journal, 2013, 773, 124.	4.5	46
179	SPECTRAL VARIABILITY FROM THE PATCHY ATMOSPHERES OF T AND Y DWARFS. Astrophysical Journal Letters, 2014, 789, L14.	8.3	46
180	THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF. Astrophysical Journal Letters, 2016, 826, L17.	8.3	46

#	Article	IF	CITATIONS
181	KEPLER-15b: A HOT JUPITER ENRICHED IN HEAVY ELEMENTS AND THE FIRST <i>KEPLER</i> MISSION PLANET CONFIRMED WITH THE HOBBY-EBERLY TELESCOPE. Astrophysical Journal, Supplement Series, 2011, 197, 13.	7.7	45
182	ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT JUPITER HAT-P-2B. Astrophysical Journal, 2014, 795, 150.	4.5	45
183	THE WATER ABUNDANCE OF THE DIRECTLY IMAGED SUBSTELLAR COMPANION Î [®] AND b RETRIEVED FROM A NEAR INFRARED SPECTRUM. Astrophysical Journal, 2016, 823, 14.	4.5	45
184	A transition between the hot and the ultra-hot Jupiter atmospheres. Astronomy and Astrophysics, 2020, 639, A36.	5.1	45
185	Updated Parameters and a New Transmission Spectrum of HD 97658b. Astronomical Journal, 2020, 159, 239.	4.7	45
186	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 2012, 33, 753-791.	3.7	44
187	DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE. Astrophysical Journal Letters, 2016, 820, L33.	8.3	44
188	Analytic Scattering and Refraction Models for Exoplanet Transit Spectra. Astrophysical Journal, 2017, 850, 128.	4.5	44
189	The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates under Conservative Assumptions. Astronomical Journal, 2018, 156, 286.	4.7	44
190	A PRECISE ESTIMATE OF THE RADIUS OF THE EXOPLANET HD 149026b FROM <i>SPITZER</i> PHOTOMETRY. Astrophysical Journal, 2009, 692, 229-235.	4.5	43
191	Mass loss from the exoplanet WASP-12b inferred from Spitzer phase curves. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1995-2013.	4.4	43
192	THE FIRST DETECTION OF PHOTOMETRIC VARIABILITY IN A Y DWARF: WISE J140518.39+553421.3. Astrophysical Journal, 2016, 823, 152.	4.5	42
193	Observations of Disequilibrium CO Chemistry in the Coldest Brown Dwarfs. Astronomical Journal, 2020, 160, 63.	4.7	42
194	The Origins Space Telescope. Nature Astronomy, 2018, 2, 596-599.	10.1	41
195	A unique hot Jupiter spectral sequence with evidence for compositional diversity. Nature Astronomy, 2021, 5, 1224-1232.	10.1	40
196	NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES. Astrophysical Journal, 2016, 817, 162.	4.5	39
197	Atmospheric Retrieval for Direct Imaging Spectroscopy of Gas Giants in Reflected Light. II. Orbital Phase and Planetary Radius. Publications of the Astronomical Society of the Pacific, 2017, 129, 034401.	3.1	39
198	An L Band Spectrum of the Coldest Brown Dwarf. Astrophysical Journal, 2018, 858, 97.	4.5	39

#	Article	IF	CITATIONS
199	Ice Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	1.7	39
200	Detection and Bulk Properties of the HR 8799 Planets with High-resolution Spectroscopy. Astronomical Journal, 2021, 162, 148.	4.7	39
201	CLOUD BASE SIGNATURE IN TRANSMISSION SPECTRA OF EXOPLANET ATMOSPHERES. Astrophysical Journal Letters, 2014, 789, L11.	8.3	38
202	MOSTSPACE TELESCOPE PHOTOMETRY OF THE 2010 JANUARY TRANSIT OF EXTRASOLAR PLANET HD80606b. Astrophysical Journal, 2013, 762, 55.	4.5	37
203	2D Retrieval Frameworks for Hot Jupiter Phase Curves. Astronomical Journal, 2020, 160, 137.	4.7	37
204	A DATA-DRIVEN APPROACH FOR RETRIEVING TEMPERATURES AND ABUNDANCES IN BROWN DWARF ATMOSPHERES. Astrophysical Journal, 2014, 793, 33.	4.5	36
205	Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System. Astrophysical Journal Letters, 2017, 836, L17.	8.3	36
206	The case and context for atmospheric methane as an exoplanet biosignature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117933119.	7.1	35
207	An HST/STIS Optical Transmission Spectrum of Warm Neptune CJ 436b. Astronomical Journal, 2018, 155, 66.	4.7	33
208	Do Metal-rich Stars Make Metal-rich Planets? New Insights on Giant Planet Formation from Host Star Abundances* â€. Astronomical Journal, 2019, 158, 239.	4.7	32
209	The thermal emission of the exoplanet WASP-3b. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3666-3678.	4.4	31
210	How to Identify Exoplanet Surfaces Using Atmospheric Trace Species in Hydrogen-dominated Atmospheres. Astrophysical Journal, 2021, 914, 38.	4.5	30
211	The Search for an Atmospheric Signature of the Transiting Exoplanet HD 149026b1. Publications of the Astronomical Society of the Pacific, 2006, 118, 1249-1256.	3.1	28
212	Clear and Cloudy Exoplanet Forecasts for JWST: Maps, Retrieved Composition, and Constraints on Formation with MIRI and NIRCam. Astronomical Journal, 2018, 156, 40.	4.7	28
213	A comprehensive reanalysis of <i>Spitzer</i> 's 4.5 μm phase curves, and the phase variations of the ultra-hot Jupiters MASCARA-1b and KELT-16b. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3316-3337.	4.4	28
214	The interiors of Uranus and Neptune: current understanding and open questions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190474.	3.4	27
215	Haze evolution in temperate exoplanet atmospheres through surface energy measurements. Nature Astronomy, 2021, 5, 822-831.	10.1	27
216	Spitzer Phase-curve Observations and Circulation Models of the Inflated Ultrahot Jupiter WASP-76b. Astronomical Journal, 2021, 162, 158.	4.7	27

#	Article	IF	CITATIONS
217	Characterization of the Atmosphere of Super-Earth 55 Cancri e Using High-resolution Ground-based Spectroscopy. Astronomical Journal, 2020, 160, 101.	4.7	26
218	Detecting Water in the Atmosphere of HR 8799 c with L-band High-dispersion Spectroscopy Aided by Adaptive Optics. Astronomical Journal, 2018, 156, 272.	4.7	25
219	Prospects for Characterizing the Haziest Sub-Neptune Exoplanets with High-resolution Spectroscopy. Astronomical Journal, 2020, 160, 198.	4.7	25
220	Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere. Astronomical Journal, 2021, 161, 18.	4.7	25
221	Was Venus Ever Habitable? Constraints from a Coupled Interior–Atmosphere–Redox Evolution Model. Planetary Science Journal, 2021, 2, 216.	3.6	25
222	BAYESIAN EVOLUTION MODELS FOR JUPITER WITH HELIUM RAIN AND DOUBLE-DIFFUSIVE CONVECTION. Astrophysical Journal, 2016, 832, 113.	4.5	24
223	Color Classification of Extrasolar Giant Planets: Prospects and Cautions. Astronomical Journal, 2018, 156, 158.	4.7	24
224	Slow Cooling and Fast Reinflation for Hot Jupiters. Astrophysical Journal Letters, 2021, 909, L16.	8.3	24
225	Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres. Astronomy and Astrophysics, 2021, 648, A127.	5.1	24
226	Saturn's Probable Interior: An Exploration of Saturn's Potential Interior Density Structures. Astrophysical Journal, 2020, 891, 109.	4.5	24
227	High-resolution Transit Spectroscopy of Warm Saturns. Astronomical Journal, 2019, 157, 58.	4.7	23
228	The Sonora Substellar Atmosphere Models. II. Cholla: A Grid of Cloud-free, Solar Metallicity Models in Chemical Disequilibrium for the JWST Era. Astrophysical Journal, 2021, 923, 269.	4.5	23
229	Evidence for a Dichotomy in the Interior Structures of Jupiter and Saturn from Helium Phase Separation. Astrophysical Journal, 2020, 889, 51.	4.5	22
230	Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability, and diversity. Experimental Astronomy, 2022, 54, 1197-1221.	3.7	21
231	An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Subsolar Water Abundance. Astronomical Journal, 2020, 160, 280.	4.7	21
232	Exploring H ₂ O Prominence in Reflection Spectra of Cool Giant Planets. Astrophysical Journal, 2018, 858, 69.	4.5	20
233	Investigating Trends in Atmospheric Compositions of Cool Gas Giant Planets Using Spitzer Secondary Eclipses. Astronomical Journal, 2019, 158, 217.	4.7	19
234	Composition of terrestrial exoplanet atmospheres from meteorite outgassing experiments. Nature Astronomy, 2021, 5, 575-585.	10.1	18

#	Article	IF	CITATIONS
235	Oxygen False Positives on Habitable Zone Planets Around Sunâ€Like Stars. AGU Advances, 2021, 2, e2020AV000294.	5.4	18
236	Detection of Ionized Calcium in the Atmosphere of the Ultra-hot Jupiter WASP-76b. Astrophysical Journal Letters, 2021, 919, L15.	8.3	18
237	PLANETARY SCIENCE: Enhanced: Looking into the Giant Planets. Science, 2004, 305, 1414-1415.	12.6	16
238	Waterworlds Probably Do Not Experience Magmatic Outgassing. Astrophysical Journal, 2021, 913, 107.	4.5	16
239	Constraining Exoplanet Metallicities and Aerosols with the Contribution to ARIEL Spectroscopy of Exoplanets (CASE). Publications of the Astronomical Society of the Pacific, 2019, 131, 094401.	3.1	15
240	Solar-to-supersolar sodium and oxygen absolute abundances for a â€~hot Saturn' orbiting a metal-rich star. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3037-3058.	4.4	15
241	Detection of the secondary eclipse of WASP-10b in the <i>K</i> s-band. Astronomy and Astrophysics, 2015, 574, A103.	5.1	14
242	ACCESS: Confirmation of No Potassium in the Atmosphere of WASP-31b. Astronomical Journal, 2020, 160, 230.	4.7	14
243	High signal-to-noise spectral characterization of the planetary-mass object HD 106906 b. Astronomy and Astrophysics, 2017, 608, A71.	5.1	13
244	The Dark World: A Tale of WASP-43b in Reflected Light with HST WFC3/UVIS. Astronomical Journal, 2021, 161, 269.	4.7	13
245	Smaller than Expected Bright-spot Offsets in Spitzer Phase Curves of the Hot Jupiter Qatar-1b. Astronomical Journal, 2020, 159, 225.	4.7	13
246	Survivor Bias: Divergent Fates of the Solar System's Ejected versus Persisting Planetesimals. Astrophysical Journal Letters, 2020, 904, L4.	8.3	13
247	Understanding planetary context to enable life detection on exoplanets and test the Copernican principle. Nature Astronomy, 2022, 6, 189-198.	10.1	13
248	Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b. Astronomy and Astrophysics, 2019, 631, A169.	5.1	12
249	Forward and inverse modeling for jovian seismology. Icarus, 2012, 220, 844-854.	2.5	11
250	High contrast imaging at the LBT: the LEECH exoplanet imaging survey. Proceedings of SPIE, 2014, , .	0.8	11
251	Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System. Planetary Science Journal, 2021, 2, 184.	3.6	11
252	Confirmation of Water Absorption in the Thermal Emission Spectrum of the Hot Jupiter WASP-77Ab with HST/WFC3. Astronomical Journal, 2022, 163, 261.	4.7	11

#	Article	IF	CITATIONS
253	Evaluating Climate Variability of the Canonical Hot-Jupiters HD 189733b and HD 209458b through Multi-epoch Eclipse Observations. Astronomical Journal, 2020, 159, 51.	4.7	10
254	A New Analysis of Eight Spitzer Phase Curves and Hot Jupiter Population Trends: Qatar-1b, Qatar-2b, WASP-52b, WASP-34b, and WASP-140b. Astronomical Journal, 2022, 163, 256.	4.7	10
255	Time-series Analysis of Broadband Photometry of Neptune from K2. Astronomical Journal, 2017, 153, 149.	4.7	9
256	<i>Spitzer</i> secondary eclipses of Qatar-1b. Astronomy and Astrophysics, 2018, 610, A55.	5.1	9
257	Transmission spectroscopy with VLT FORS2: a featureless spectrum for the low-density transiting exoplanet WASP-88b. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2853-2870.	4.4	9
258	Detection of the secondary eclipse of Qatar-1b in the <i>K</i> s band. Astronomy and Astrophysics, 2016, 595, A61.	5.1	8
259	BENCHMARK TRANSITING BROWN DWARF LHS 6343 C: SPITZER SECONDARY ECLIPSE OBSERVATIONS YIELD BRIGHTNESS TEMPERATURE AND MID-T SPECTRAL CLASS. Astrophysical Journal Letters, 2016, 822, L6.	8.3	8
260	Exploring a Photospheric Radius Correction to Model Secondary Eclipse Spectra for Transiting Exoplanets. Astrophysical Journal Letters, 2019, 880, L16.	8.3	8
261	An Empirical Mass–Radius Relation for Cool Giant Planets. Research Notes of the AAS, 2019, 3, 128.	0.7	8
262	Microphysics of Water Clouds in the Atmospheres of Y Dwarfs and Temperate Giant Planets. Astrophysical Journal, 2022, 927, 184.	4.5	8
263	A 1.46–2.48Âμm spectroscopic atlas of a T6 dwarf (1060ÂK) atmosphere with IGRINS: first detections of H2S and H2, and verification of H2O, CH4, and NH3 line lists. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3160-3178.	4.4	8
264	Detecting and Characterizing Water Vapor in the Atmospheres of Earth Analogs through Observation of the 0.94 μm Feature in Reflected Light. Astronomical Journal, 2020, 159, 36.	4.7	7
265	The Interior of Saturn. , 2018, , 44-68.		6
266	Connecting the Gravity Field, Moment of Inertia, and Core Properties in Jupiter through Empirical Structural Models. Astrophysical Journal, 2021, 910, 38.	4.5	6
267	Ground-based Transmission Spectroscopy with VLT FORS2: Evidence for Faculae and Clouds in the Optical Spectrum of the Warm Saturn WASP-110b. Astronomical Journal, 2021, 162, 88.	4.7	6
268	Thermal Phase Curves of XO-3b: An Eccentric Hot Jupiter at the Deuterium Burning Limit. Astronomical Journal, 2022, 163, 32.	4.7	6
269	Modeling Polarization Signals from Cloudy Brown Dwarfs Luhman 16 A and B in Three Dimensions. Astrophysical Journal, 2021, 923, 113.	4.5	6
270	The Promise and Limitations of Precision Gravity: Application to the Interior Structure of Uranus and Neptune. Planetary Science Journal, 2022, 3, 88.	3.6	6

#	Article	IF	CITATIONS
271	The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments. Astrophysics and Space Science, 2007, 307, 279-283.	1.4	5
272	A new method to measure the spectra of transiting exoplanet atmospheres using multi-object spectroscopy. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3236-3265.	4.4	5
273	Modeling Exoplanetary Atmospheres: An Overview. Astrophysics and Space Science Library, 2018, , 51-88.	2.7	4
274	lce giant system exploration within ESA's Voyage 2050. Experimental Astronomy, 2022, 54, 1015-1025.	3.7	4
275	Quantifying the Impact of Spectral Coverage on the Retrieval of Molecular Abundances from Exoplanet Transmission Spectra. Publications of the Astronomical Society of the Pacific, 2017, 129, 104402.	3.1	4
276	A Framework for Characterizing Transmission Spectra of Exoplanets with Circumplanetary Rings. Astrophysical Journal, 2022, 930, 50.	4.5	4
277	Interiors of the Giant Planets. , 2014, , 743-758.		3
278	A new statistical method for characterizing the atmospheres of extrasolar planets. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4557-4563.	4.4	3
279	An Ultra-Stable Mid-Infrared Sensor for the Detection of Bio-Signatures by Means of Transit Spectroscopy. , 2019, , .		3
280	Origins Space Telescope: trades and decisions leading to the baseline mission concept. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.8	3
281	The one that got away. Nature, 2007, 449, 147-148.	27.8	2
282	LEECH: A 100 Night Exoplanet Imaging Survey at the LBT. Proceedings of the International Astronomical Union, 2013, 8, 70-71.	0.0	2
283	Peering into Jupiter. Physics Magazine, 0, 3, .	0.1	1
284	ACCESS I. AN OPTICAL TRANSMISSION SPECTRUM OF GJ 1214b REVEALS A HETEROGENEOUS STELLAR PHOTOSPHERE. Astrophysical Journal, 2017, 834, 151.	4.5	1
285	A new method to correct for host star variability in multi-epoch observations of exoplanet transmission spectra. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1
286	What can we learn about giant planets from low resolution spectra?. Proceedings of the International Astronomical Union, 2005, 1, 145-152.	0.0	0
287	Interiors of the Giant Planets. , 2007, , 403-418.		0
288	Two Classes of Hot Jupiter Atmospheres. Proceedings of the International Astronomical Union, 2008, 4, 247-253.	0.0	0

#	Article	IF	CITATIONS
289	A Precise Estimate of the Radius of HD 149026b. Proceedings of the International Astronomical Union, 2008, 4, 466-469.	0.0	0
290	Detection of secondary eclipses of WASP-10b and Qatar-1b in the Ks band and the correlation between Ks-band temperature and stellar activity Proceedings of the International Astronomical Union, 2016, 12, 363-370.	0.0	0
291	The Interior Structure, Composition, and Evolution ofÂGiant Planets. Space Sciences Series of ISSI, 2009, , 423-447.	0.0	0
292	The Structure of Jupiter, Saturn, and Exoplanets: Key Questions for High-Pressure Experiments. , 2006, , 279-283.		0