
Pardis C Sabeti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105872/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	13.7	13,998
2	Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356, 438-442.	6.0	2,275
3	Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014, 345, 1369-1372.	6.0	1,083
4	Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360, 444-448.	6.0	982
5	Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 2020, 183, 739-751.e8.	13.5	924
6	COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature, 2021, 595, 107-113.	13.7	537
7	Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, 582, 277-282.	13.7	492
8	Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell, 2016, 165, 1519-1529.	13.5	378
9	Benchmarking Metagenomics Tools for Taxonomic Classification. Cell, 2019, 178, 779-794.	13.5	364
10	Natural selection and infectious disease in human populations. Nature Reviews Genetics, 2014, 15, 379-393.	7.7	353
11	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	13.7	323
12	Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications, 2020, 11, 5921.	5.8	299
13	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	13.7	298
14	Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11.	4.5	286
15	Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell, 2015, 161, 1516-1526.	13.5	275
16	Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, .	2.8	252
17	Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell, 2015, 162, 738-750.	13.5	230
18	Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science, 2021, 371, .	6.0	226

#	Article	IF	CITATIONS
19	Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell, 2021, 184, 4919-4938.e22.	13.5	193
20	Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic. Cell, 2016, 167, 1088-1098.e6.	13.5	173
21	Lassa Fever in Post-Conflict Sierra Leone. PLoS Neglected Tropical Diseases, 2014, 8, e2748.	1.3	172
22	Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science, 2022, 376, 1327-1332.	6.0	172
23	Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics, 2015, 16, 454.	1.2	160
24	Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nature Communications, 2016, 7, 11544.	5.8	148
25	Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. New England Journal of Medicine, 2018, 379, 1745-1753.	13.9	135
26	Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biology, 2014, 15, 519.	3.8	129
27	Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1083-1094.	15.2	127
28	Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nature Communications, 2020, 11, 4131.	5.8	101
29	Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 684-695.	4.6	100
30	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	13.5	98
31	Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic. Nature, 2015, 524, 102-104.	13.7	96
32	Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature Biotechnology, 2019, 37, 160-168.	9.4	96
33	Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections. PLoS Neglected Tropical Diseases, 2015, 9, e0003539.	1.3	90
34	Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. PLoS Genetics, 2011, 7, e1001383.	1.5	85
35	New filovirus disease classification and nomenclature. Nature Reviews Microbiology, 2019, 17, 261-263.	13.6	84
36	Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014. Viruses, 2014, 6, 4760-4799.	1.5	83

#	Article	IF	CITATIONS
37	Single-Cell Profiling of Ebola Virus Disease InÂVivo Reveals Viral and Host Dynamics. Cell, 2020, 183, 1383-1401.e19.	13.5	79
38	Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nature Biomedical Engineering, 2022, 6, 932-943.	11.6	76
39	COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malaria Journal, 2015, 14, 4.	0.8	71
40	GB Virus C Coinfections in West African Ebola Patients. Journal of Virology, 2015, 89, 2425-2429.	1.5	65
41	Evaluation of the Potential Impact of Ebola Virus Genomic Drift on the Efficacy of Sequence-Based Candidate Therapeutics. MBio, 2015, 6, .	1.8	62
42	Genome-wide functional screen of $3\hat{a}\in^2$ UTR variants uncovers causal variants for human disease and evolution. Cell, 2021, 184, 5247-5260.e19.	13.5	62
43	Genomic Analysis of Viral Outbreaks. Annual Review of Virology, 2016, 3, 173-195.	3.0	61
44	A genetic basis of variation in eccrine sweat gland and hair follicle density. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9932-9937.	3.3	57
45	Discovery of Novel Rhabdoviruses in the Blood of Healthy Individuals from West Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003631.	1.3	56
46	Identifying the favored mutation in a positive selective sweep. Nature Methods, 2018, 15, 279-282.	9.0	56
47	In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC Genomics, 2016, 17, 707.	1.2	54
48	Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host and Microbe, 2021, 29, 689-703.	5.1	50
49	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
50	Roots, Not Parachutes: Research Collaborations Combat Outbreaks. Cell, 2016, 166, 5-8.	13.5	48
51	A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell, 2020, 183, 684-701.e14.	13.5	46
52	<i>Cosi2:</i> an efficient simulator of exact and approximate coalescent with selection. Bioinformatics, 2014, 30, 3427-3429.	1.8	40
53	Predicting gene expression in massively parallel reporter assays: A comparative study. Human Mutation, 2017, 38, 1240-1250.	1.1	39
54	Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Scientific Reports, 2018, 8, 5939.	1.6	39

#	Article	IF	CITATIONS
55	Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications. EClinicalMedicine, 2019, 11, 54-64.	3.2	38
56	Transmission from vaccinated individuals in a large SARS-CoV-2 Delta variant outbreak. Cell, 2022, 185, 485-492.e10.	13.5	38
57	Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS Biology, 2020, 18, e3000611.	2.6	37
58	Comparative evidence for the independent evolution of hair and sweat gland traits in primates. Journal of Human Evolution, 2018, 125, 99-105.	1.3	36
59	Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH. Nature Genetics, 2021, 53, 1166-1176.	9.4	36
60	Diagnostic Approach for Arboviral Infections in the United States. Journal of Clinical Microbiology, 2020, 58, .	1.8	35
61	An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.	1.9	34
62	Designing sensitive viral diagnostics with machine learning. Nature Biotechnology, 2022, 40, 1123-1131.	9.4	30
63	Cleaning up the record on the maximal information coefficient and equitability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3362-3.	3.3	27
64	Intrathecal inflammatory responses in the absence of SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients. Journal of the Neurological Sciences, 2021, 430, 120023.	0.3	27
65	Unbiased Deep Sequencing of RNA Viruses from Clinical Samples. Journal of Visualized Experiments, 2016, , .	0.2	26
66	Evidence of Ebola Virus Replication and High Concentration in Semen of a Patient During Recovery. Clinical Infectious Diseases, 2017, 65, 1400-1403.	2.9	26
67	Testing in a Pandemic — Improving Access, Coordination, and Prioritization. New England Journal of Medicine, 2021, 384, 197-199.	13.9	24
68	Detection of Neanderthal Adaptively Introgressed Genetic Variants That Modulate Reporter Gene Expression in Human Immune Cells. Molecular Biology and Evolution, 2022, 39, .	3.5	24
69	Jamestown Canyon virus in Massachusetts: clinical case series and vector screening. Emerging Microbes and Infections, 2020, 9, 903-912.	3.0	20
70	Ebola Virus Epidemiology and Evolution in Nigeria. Journal of Infectious Diseases, 2016, 214, S102-S109.	1.9	19
71	Powassan Virus Neuropathology and Genomic Diversity in Patients With Fatal Encephalitis. Open Forum Infectious Diseases, 2020, 7, ofaa392.	0.4	19
72	Fatal Case of Chronic Jamestown Canyon Virus Encephalitis Diagnosed by Metagenomic Sequencing in Patient Receiving Rituximab. Emerging Infectious Diseases, 2021, 27, 238-242.	2.0	17

#	Article	IF	CITATIONS
73	Identification of Common CD8 ⁺ T Cell Epitopes from Lassa Fever Survivors in Nigeria and Sierra Leone. Journal of Virology, 2020, 94, .	1.5	15
74	Multiplexed detection of bacterial nucleic acids using Cas13 in droplet microarrays. , 2022, 1, pgac021.		15
75	Acute Lassa Virus Encephalitis with Lassa Virus in the Cerebrospinal Fluid but Absent in the Blood: A Case Report with a Positive Outcome. Case Reports in Neurology, 2018, 10, 150-158.	0.3	12
76	SARS-CoV-2 Reinfection in a Liver Transplant Recipient. Annals of Internal Medicine, 2021, 174, 1178-1180.	2.0	10
77	Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses, 2020, 12, 105.	1.5	9
78	The Origins and Future of Sentinel: An Early-Warning System for Pandemic Preemption and Response. Viruses, 2021, 13, 1605.	1.5	8
79	Serological Markers of SARS-CoV-2 Reinfection. MBio, 2022, 13, e0214121.	1.8	8
80	Containing the spread of mumps on college campuses. Royal Society Open Science, 2022, 9, 210948.	1.1	6
81	Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample contamination in SARS-CoV-2 sequencing workflows. Nature Microbiology, 2022, 7, 108-119.	5.9	6
82	Development of a SNP barcode to genotype Babesia microti infections. PLoS Neglected Tropical Diseases, 2019, 13, e0007194.	1.3	5
83	Development of a qualitative real-time RT-PCR assay for the detection of SARS-CoV-2: a guide and case study in setting up an emergency-use, laboratory-developed molecular microbiological assay. Journal of Clinical Pathology, 2021, 74, 496-503.	1.0	5
84	Lassa Virus Genetics. Current Topics in Microbiology and Immunology, 2020, , 1.	0.7	4
85	The case for altruism in institutional diagnostic testing. Scientific Reports, 2022, 12, 1857.	1.6	3
86	Preventing Outbreaks through Interactive, Experiential Real-Life Simulations. Cell, 2020, 182, 1366-1371.	13.5	2
87	Unrecognized introductions of SARS-CoV-2 into the US state of Georgia shaped the early epidemic. Virus Evolution, 2022, 8, veac011.	2.2	2
88	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
89	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
90	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0

#	Article	IF	CITATIONS
91	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
92	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
93	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0