Wenqing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7103755/publications.pdf

Version: 2024-02-01

18	965	623734	839539
papers	citations	h-index	g-index
19	19	19	1227
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reactivity of chloroacetamides toward sulfideÂ+Âblack carbon: Insights from structural analogues and dynamic NMR spectroscopy. Science of the Total Environment, 2022, 803, 150064.	8.0	3
2	Pyrogenic carbon-promoted haloacetic acid decarboxylation to trihalomethanes in drinking water. Water Research, 2022, 210, 117988.	11.3	2
3	Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars. Environmental Science & Technology, 2021, 55, 11434-11444.	10.0	21
4	Mechanistic Investigation of Haloacetic Acid Reduction Using Carbon-Ti ₄ O ₇ Composite Reactive Electrochemical Membranes. Environmental Science & Environme	10.0	37
5	Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	10
6	Black carbon-enhanced transformation of dichloroacetamide safeners: Role of reduced sulfur species. Science of the Total Environment, 2020, 738, 139908.	8.0	17
7	Probing the Surface Reactivity of Pyrogenic Carbonaceous Material (PCM) through Synthesis of PCM-Like Conjugated Microporous Polymers. Environmental Science & Environmental S	10.0	16
8	The synergistic interaction between sulfate-reducing bacteria and pyrogenic carbonaceous matter in DDT decay. Chemosphere, 2019, 233, 252-260.	8.2	6
9	Simultaneous Adsorption and Electrochemical Reduction of N-Nitrosodimethylamine Using Carbon-Ti ₄ O ₇ Composite Reactive Electrochemical Membranes. Environmental Science & Electrochemical Membranes.	10.0	59
10	Surface-promoted hydrolysis of 2,4,6-trinitrotoluene and 2,4-dinitroanisole on pyrogenic carbonaceous matter. Chemosphere, 2018, 197, 603-610.	8.2	14
11	Impact of chitosan and polyacrylamide on formation of carbonaceous and nitrogenous disinfection by-products. Chemosphere, 2017, 178, 26-33.	8.2	14
12	Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds. Environmental Science & Environmental Scien	10.0	213
13	Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide. Environmental Science & Technology, 2016, 50, 12976-12983.	10.0	48
14	Reduction of Nitroaromatics Sorbed to Black Carbon by Direct Reaction with Sorbed Sulfides. Environmental Science & Environmen	10.0	66
15	Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 2013, 1, 11691 .	10.3	133
16	Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Transformation on Carbon Surfaces by Sulfides. Environmental Science &	10.0	155
17	Visibleâ€Light Photocatalytic Degradation of Methylene Blue Using SnO ₂ ∫αâ€Fe ₂ O ₃ Hierarchical Nanoheterostructures. ChemPlusChem, 2013, 78, 192-199.	2.8	69
18	Black Carbon-Mediated Destruction of Nitroglycerin and RDX By Hydrogen Sulfide. Environmental Science & Environmental Science	10.0	82