
Sarah H Lindsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7103086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoacoustic tomography to assess acute vasoactivity of systemic vasculature. , 2022, , .		Ο
2	Efficacy of glucagon-like peptide-1 and estrogen dual agonist in pancreatic islets protection and pre-clinical models of insulin-deficient diabetes. Cell Reports Medicine, 2022, 3, 100598.	6.5	6
3	Glycolytic and Oxidative Phosphorylation Defects Precede the Development of Senescence in Primary Human Brain Microvascular Endothelial Cells. GeroScience, 2022, 44, 1975-1994.	4.6	19
4	Biaxial Murine Vaginal Remodeling With Reproductive Aging. Journal of Biomechanical Engineering, 2022, 144, .	1.3	1
5	DHT Induces Arterial Stiffening in Female Wild Type Mice. FASEB Journal, 2022, 36, .	0.5	1
6	Ovariectomyâ€Induced Arterial Stiffening is Associated with Downregulation of Tissue Resident Macrophage Markers. FASEB Journal, 2022, 36, .	0.5	0
7	NAMS 2021 Utian Translational Science SymposiumSeptember 2021, Washington, DCCharting the path to health in midlife and beyond: the biology and practice of wellness. Menopause, 2022, 29, 504-513.	2.0	0
8	Sexâ€dependent Regulation of Mitochondrial Respiratory Function in Mouse Brain Microvessels by Peroxynitrite Decomposition Catalyst. FASEB Journal, 2022, 36, .	0.5	0
9	Sex differences in vascular aging and impact of GPER deletion. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H336-H349.	3.2	17
10	Alterations in the estrogen receptor profile of cardiovascular tissues during aging. GeroScience, 2021, 43, 433-442.	4.6	19
11	Sex and the G Protein–Coupled Estrogen Receptor Impact Vascular Stiffness. Hypertension, 2021, 78, e1-e14.	2.7	9
12	Editorial: GPER and Human Pathologies. Frontiers in Endocrinology, 2021, 12, 794332.	3.5	2
13	Editorial: GPER: Control and Functions. Frontiers in Endocrinology, 2021, 12, 794344.	3.5	1
14	Urinary angiotensinogen increases in the absence of overt renal injury in high fat diet-induced type 2 diabetic mice. Journal of Diabetes and Its Complications, 2020, 34, 107448.	2.3	14
15	4007 Medroxyprogesterone Upregulates the Glucocorticoid Receptor in Female Long Evans Rats. Journal of Clinical and Translational Science, 2020, 4, 12-12.	0.6	0
16	Evidence for Gâ€Protein–Coupled Estrogen Receptor as a Pronatriuretic Factor. Journal of the American Heart Association, 2020, 9, e015110.	3.7	30
17	Angiotensin II represses Npr1 expression and receptor function by recruitment of transcription factors CREB and HSF-4a and activation of HDACs. Scientific Reports, 2020, 10, 4337.	3.3	9
18	Medroxyprogesterone opposes estradiol-induced renal damage in midlife ovariectomized Long Evans rats. Menopause. 2020. 27. 1411-1419.	2.0	3

#	Article	IF	CITATIONS
19	Impact of Ovariectomy on Arterial Stiffness. FASEB Journal, 2020, 34, 1-1.	O.5	Ο
20	Impact of Aging and G Protein oupled Estrogen Receptor Deletion in Arterial Stiffening and Cardiac Function in Male and Female Mice. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	G Proteinâ€coupled Estrogen Receptor Protects Against Agingâ€Induced Vascular Dysfunction in Females but Not Males FASEB Journal, 2020, 34, 1-1.	0.5	0
22	Angiotensin II Represses Guanylyl Cyclase/Natriuretic Peptide Receptorâ€A Gene Expression and Receptor Signaling and Function. FASEB Journal, 2020, 34, 1-1.	0.5	0
23	Trafficking of the Prorenin Receptor in Endothelial Cells. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
24	Impact of GPER, Sex, and Age on Arterial Stiffness and Fibrotic Gene Expression. FASEB Journal, 2020, 34, 1-1.	0.5	0
25	Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice. Biology of Sex Differences, 2019, 10, 36.	4.1	13
26	Smooth muscle regional contribution to vaginal wall function. Interface Focus, 2019, 9, 20190025.	3.0	32
27	G Protein-Coupled Estrogen Receptor Protects From Angiotensin II-Induced Increases in Pulse Pressure and Oxidative Stress. Frontiers in Endocrinology, 2019, 10, 586.	3.5	37
28	Spectral photoacoustic imaging to estimate in vivo placental oxygenation during preeclampsia. Scientific Reports, 2019, 9, 558.	3.3	42
29	Bazedoxifene-induced vasodilation and inhibition of vasoconstriction is significantly greater than estradiol. Menopause, 2019, 26, 172-181.	2.0	8
30	Evaluating residual strain throughout the murine female reproductive system. Journal of Biomechanics, 2019, 82, 299-306.	2.1	14
31	Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biology of Sex Differences, 2019, 10, 4.	4.1	90
32	Female Heart Health: Is GPER the Missing Link?. Frontiers in Endocrinology, 2019, 10, 919.	3.5	30
33	Role of Sex and GPER in Renal Damage Induced by Ang II Hypertension. FASEB Journal, 2019, 33, 569.3.	O.5	0
34	Hormonal Regulation of Estrogen Receptors. FASEB Journal, 2019, 33, 577.2.	0.5	0
35	Abstract P112: Sex Differences and the Role of G Protein-Coupled Estrogen Receptor in Arterial Stiffening. Hypertension, 2019, 74, .	2.7	0
36	Abstract 072: Medroxyprogesterone Prevents the Decline in Renal Health Due to Estradiol. Hypertension, 2019, 74, .	2.7	0

#	Article	IF	CITATIONS
37	New insights into arterial stiffening: does sex matter?. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1073-H1087.	3.2	72
38	Stable Density and Dynamics of Dendritic Spines of Cortical Neurons Across the Estrous Cycle While Expressing Differential Levels of Sensory-Evoked Plasticity. Frontiers in Molecular Neuroscience, 2018, 11, 83.	2.9	23
39	GPER Attenuates Angiotensin IIâ€Induced Oxidative Stress via cAMPâ€Mediated Regulation of NOX4. FASEB Journal, 2018, 32, 700.1.	0.5	0
40	Abstract 113: Female Protection From Arterial Stiffness Diminishes With G Protein-Coupled Estrogen Receptor Deletion or Angiotensin II Hypertension. Hypertension, 2018, 72, .	2.7	0
41	Effect of menopausal hormone therapy on components of the metabolic syndrome. Therapeutic Advances in Cardiovascular Disease, 2017, 11, 33-43.	2.1	20
42	Potential for miRNAs as Biomarkers and Therapeutic Targets in Preeclampsia. Hypertension, 2017, 69, 580-581.	2.7	6
43	Long- but not short-term estradiol treatment induces renal damage in midlife ovariectomized Long-Evans rats. American Journal of Physiology - Renal Physiology, 2017, 312, F305-F311.	2.7	11
44	Sex and Gender Differences in Cardiovascular Disease. , 2016, , 61-87.		9
45	Inconsistent blood pressure phenotype in female Dahl salt-sensitive rats. American Journal of Physiology - Renal Physiology, 2016, 311, F1391-F1392.	2.7	12
46	Transforming growth factor β1 antagonizes the transcription, expression and vascular signaling of guanylyl cyclase/natriuretic peptide receptor A – role of δEF 1. FEBS Journal, 2016, 283, 1767-1781.	4.7	6
47	GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H953-H961.	3.2	41
48	GPER–novel membrane oestrogen receptor. Clinical Science, 2016, 130, 1005-1016.	4.3	91
49	Abstract P620: Aging Decreases Vascular GPER Expression and Function. Hypertension, 2016, 68, .	2.7	0
50	Abstract 058: Transforming Growth Factor β1 Antagonizes <i>Npr1</i> Expression and Vascular Signaling: Role of Transcription Factor ÎEF1 Transforming Growth Factor β1 Antagonizes <i>Npr1</i> Expression and Vascular Signaling: Role of Transcription Factor ÎEF1. Hypertension, 2016, 68, .	2.7	0
51	Analysis of erectile responses to bradykinin in the anesthetized rat. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H499-H511.	3.2	3
52	Uterine artery dysfunction in pregnant ACE2 knockout mice is associated with placental hypoxia and reduced umbilical blood flow velocity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E84-E94.	3.5	46
53	Midlife Ovariectomy Increases Blood Pressure in Long Evans Rats and is Attenuated by Transient or Continuous Estradiol Treatment. FASEB Journal, 2015, 29, 623.7.	0.5	0
54	G Protein oupled Estrogen Receptor Activation Attenuates Rat Aortic Smooth Muscle Cell Proliferation. FASEB Journal, 2015, 29, 966.4.	0.5	0

#	Article	IF	CITATIONS
55	Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling. Steroids, 2014, 81, 99-102.	1.8	87
56	Importance of Estrogen Metabolites. Hypertension, 2014, 64, 21-22.	2.7	4
57	Role of estrogen in diastolic dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H628-H640.	3.2	150
58	GPER activation ameliorates vascular remodeling in saltâ€sensitive mRen2.Lewis rats (867.7). FASEB Journal, 2014, 28, 867.7.	0.5	0
59	Reduced vasorelaxation to estradiol and C-1 in aged female and adult male rats is associated with GPR30 downregulation. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E113-E118.	3.5	49
60	Differential regulation of circulating and renal ACE2 and ACE in hypertensive mRen2.Lewis rats with early-onset diabetes. American Journal of Physiology - Renal Physiology, 2012, 302, F1374-F1384.	2.7	67
61	Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats. Cardiovascular Research, 2012, 94, 96-104.	3.8	102
62	Amelioration of Renal Injury and Oxidative Stress by the nNOS Inhibitor L-VNIO in the Salt-sensitive mRen2.Lewis Congenic Rat. Journal of Cardiovascular Pharmacology, 2012, 59, 529-538.	1.9	13
63	Differential effects of late-life initiation of low-dose enalapril and losartan on diastolic function in senescent Fischer 344 × Brown Norway male rats. Age, 2012, 34, 831-843.	3.0	6
64	Saltâ€Dependent Hypertension and Renal Injury are Associated with Increased Excretion of Angiotensinogen and Angiotensin―(1â€12) in Female mRen2.Lewis Rats. FASEB Journal, 2012, 26, lb818.	0.5	0
65	Vasodilation in Response to the GPR30 Agonist G-1 is Not Different From Estradiol in the mRen2.Lewis Female Rat. Journal of Cardiovascular Pharmacology, 2011, 57, 598-603.	1.9	95
66	Evidence That the G Protein–Coupled Membrane Receptor GPR30 Contributes to the Cardiovascular Actions of Estrogen. Gender Medicine, 2011, 8, 343-354.	1.4	34
67	Estrogen Receptor GPR30 Reduces Oxidative Stress and Proteinuria in the Salt-Sensitive Female mRen2.Lewis Rat. Hypertension, 2011, 58, 665-671.	2.7	97
68	GPR30 Attenuates Functional AT1 Receptor Expression in Rat Mesenteric Smooth Muscle Cells. FASEB Journal, 2011, 25, 1088.8.	0.5	3
69	Stretch-Induced TRPC4 Downregulation is Accompanied By Reduced Capacitative Ca2+Entry in WKY But Not SHR Mesenteric Smooth Muscle Cells. Clinical and Experimental Hypertension, 2010, 32, 288-292.	1.3	7
70	Influence of estrogen depletion and salt loading on renal angiotensinogen expression in the mRen(2).Lewis strain. American Journal of Physiology - Renal Physiology, 2010, 299, F35-F42.	2.7	26
71	Attenuation of Salt-Induced Cardiac Remodeling and Diastolic Dysfunction by the GPER Agonist G-1 in Female mRen2.Lewis Rats. PLoS ONE, 2010, 5, e15433.	2.5	89
72	Chronic Treatment with the G Protein-Coupled Receptor 30 Agonist G-1 Decreases Blood Pressure in Ovariectomized mRen2.Lewis Rats. Endocrinology, 2009, 150, 3753-3758.	2.8	156

#	Article	IF	CITATIONS
73	GPR30 Receptor Activation Improves Cardiac Function in Intact Female mRen2.Lewis Rats. Journal of Cardiac Failure, 2009, 15, S75.	1.7	0
74	Cyclic stretch decreases TRPC4 protein and capacitative calcium entry in rat vascular smooth muscle cells. Life Sciences, 2008, 83, 29-34.	4.3	21
75	Quantitative Trait Loci Mapping for Ethanol Sensitivity and Neurotensin Receptor Density in an F2 Intercross Derived From Inbred High and Low Alcohol Sensitivity Selectively Bred Rat Lines. Alcoholism: Clinical and Experimental Research, 2004, 28, 1796-1804.	2.4	14
76	Behavioral Characterization of Alcohol-Tolerant and Alcohol-Nontolerant Rat Lines and an F2Generation. Behavior Genetics, 2004, 34, 453-463.	2.1	14
77	Ethanol-Induced Impairments in Spatial Working Memory Are Not Due to Deficits in Learning. Alcoholism: Clinical and Experimental Research, 2001, 25, 856-861.	2.4	32