
Enrica Fabbri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102777/publications.pdf Version: 2024-02-01

ENDICA FARREL

#	Article	IF	CITATIONS
1	Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). International Journal of Oncology, 2016, 49, 5-32.	3.3	184
2	Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). International Journal of Oncology, 2015, 47, 417-428.	3.3	103
3	Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development. Biochemical Pharmacology, 2011, 82, 1416-1429.	4.4	100
4	Expression of microRNA-93 and Interleukin-8 during <i>Pseudomonas aeruginosa</i> –Mediated Induction of Proinflammatory Responses. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1144-1155.	2.9	82
5	Modulation of the Biological Activity of microRNAâ€210 with Peptide Nucleic Acids (PNAs). ChemMedChem, 2011, 6, 2192-2202.	3.2	72
6	Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. International Journal of Oncology, 2012, 41, 2119-2127.	3.3	67
7	High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 2016, 48, 1029-1038.	3.3	62
8	Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells. International Immunopharmacology, 2012, 13, 308-315.	3.8	59
9	Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-Oncology, 2014, 118, 19-28.	2.9	57
10	Cellular Uptakes, Biostabilities and Antiâ€miRâ€210 Activities of Chiral Arginineâ€PNAs in Leukaemic K562 Cells. ChemBioChem, 2012, 13, 1327-1337.	2.6	56
11	Hybrid α-bromoacryloylamido chalcones. Design, synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2022-2028.	2.2	50
12	Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression. BMC Structural Biology, 2008, 8, 38.	2.3	48
13	MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Molecular Diagnosis and Therapy, 2019, 23, 155-171.	3.8	44
14	A Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells. Molecules, 2018, 23, 71.	3.8	43
15	MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncology Reports, 2016, 35, 2866-2872.	2.6	41
16	miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics, 2011, 3, 733-745.	2.1	39
17	UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Research, 2009, 37, D41-D48.	14.5	38
18	Programmable Interactions of Functionalized Single Bioparticles in a Dielectrophoresis-Based Microarray Chip. Analytical Chemistry, 2013, 85, 8219-8224.	6.5	37

Enrica Fabbri

#	Article	IF	CITATIONS
19	BCL11A mRNA Targeting by miR-210: A Possible Network Regulating \hat{I}^3 -Globin Gene Expression. International Journal of Molecular Sciences, 2017, 18, 2530.	4.1	36
20	Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L380-L390.	2.9	34
21	miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget, 2016, 7, 28195-28206.	1.8	34
22	Antiproliferative activity of Pt(II) and Pd(II) phosphine complexes with thymine and thymidine. Journal of Inorganic Biochemistry, 2007, 101, 254-260.	3.5	33
23	Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer, 2015, 15, 661.	2.6	31
24	Bangladeshi Medicinal Plant Extracts Inhibiting Molecular Interactions between Nuclear Factors and Target DNA Sequences Mimicking NF-kB Binding Sites. Medicinal Chemistry, 2005, 1, 327-333.	1.5	29
25	Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells. PLoS ONE, 2015, 10, e0121567.	2.5	28
26	Separation of white blood cells from erythrocytes on a dielectrophoresis (DEP) based 'Lab-on-a-chip' device. International Journal of Molecular Medicine, 2005, 15, 913-20.	4.0	28
27	Identification of candidate epigenetic biomarkers for ovarian cancer detection. Oncology Reports, 2009, 22, .	2.6	26
28	Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacological Research, 2015, 91, 57-68.	7.1	26
29	Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery. Bioconjugate Chemistry, 2015, 26, 1533-1541.	3.6	25
30	Liquid biopsy in mice bearing colorectal carcinoma xenografts: gateways regulating the levels of circulating tumor DNA (ctDNA) and miRNA (ctmiRNA). Journal of Experimental and Clinical Cancer Research, 2018, 37, 124.	8.6	25
31	5-(Dimethylamino)-N-(4-ethynylphenyl)-1-naphthalenesulfonamide as a novel bifunctional antitumor agent and two-photon induced bio-imaging probe. Chemical Communications, 2010, 46, 3538.	4.1	23
32	Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apop temozolomide‑resistant T98G glioma cells. International Journal of Oncology, 2019, 55, 59-68.	otosis in	22
33	Targeting pre-miRNA by Peptide Nucleic Acids. Artificial DNA, PNA & XNA, 2012, 3, 88-96.	1.4	20
34	An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system. International Journal of Biological Macromolecules, 2017, 99, 492-498.	7.5	19
35	Corilagin Induces High Levels of Apoptosis in the Temozolomide-Resistant T98G Glioma Cell Line. Oncology Research, 2018, 26, 1307-1315.	1.5	18
36	Treatment of human airway epithelial Calu-3Âcells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. European Journal of Medicinal Chemistry, 2021, 209, 112876.	5.5	18

ENRICA FABBRI

#	Article	IF	CITATIONS
37	\hat{I}^3 -Hydroxymethyl PNAs: Synthesis, interaction with DNA and inhibition of protein/DNA interactions. Bioorganic Chemistry, 2010, 38, 196-201.	4.1	17
38	Lysis-on-Chip of Single Target Cells following Forced Interaction with CTLs or NK Cells on a Dielectrophoresis-Based Array. Journal of Immunology, 2013, 191, 3545-3552.	0.8	17
39	Structural and Functional Insights on an Uncharacterized Aγ-Globin-Gene Polymorphism Present in Four β0-Thalassemia Families with High Fetal Hemoglobin Levels. Molecular Diagnosis and Therapy, 2016, 20, 161-173.	3.8	17
40	Alternate PNAâ€DNA chimeras (PNAâ€DNA) _{<i>n</i>} : Synthesis, binding properties and biological activity. Biopolymers, 2007, 88, 815-822.	2.4	16
41	Discovery of 8-methoxypyrazino[1,2-a]indole as a New Potent Antiproliferative Agent Against Human Leukemia K562 Cells. A Structure-Activity Relationship Study. Letters in Drug Design and Discovery, 2009, 6, 298-303.	0.7	15
42	Decoy Molecules Based on PNA–DNA Chimeras and Targeting Sp1 Transcription Factors Inhibit the Activity of Urokinase-Type Plasminogen Activator Receptor (uPAR) Promoter. Oncology Research, 2005, 15, 373-383.	1.5	15
43	Virtual Screening against p50 NFâ€₽̂B Transcription Factor for the Identification of Inhibitors of the NFâ€₽̂B–DNA Interaction and Expression of NFâ€₽̂B Upregulated Genes. ChemMedChem, 2009, 4, 2024-2033.	3.2	14
44	Altered erythroidâ€related miRNA levels as a possible novel biomarker for detection of autologous blood transfusion misuse in sport. Transfusion, 2019, 59, 2709-2721.	1.6	11
45	Changes in hemoglobin profile reflect autologous blood transfusion misuse in sports. Internal and Emergency Medicine, 2018, 13, 517-526.	2.0	10
46	A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines, 2021, 9, 117.	3.2	9
47	Molecular Methods for Validation of the Biological Activity of Peptide Nucleic Acids Targeting MicroRNAs. Methods in Molecular Biology, 2014, 1095, 165-176.	0.9	9
48	Levitation and movement of tripalmitinâ€based cationic lipospheres on a dielectrophoresisâ€based labâ€onâ€aâ€chip device. Journal of Applied Polymer Science, 2008, 109, 3484-3491.	2.6	8
49	Peptide Nucleic Acids for MicroRNA Targeting. Methods in Molecular Biology, 2020, 2105, 199-215.	0.9	7
50	Comparative antiproliferative activities of wood and seeds essential oils of <i>Juniperus oxycedrus</i> L. against K562 human chronic myelogenous leukemia cells. Journal of Essential Oil Research, 2014, 26, 301-307.	2.7	5
51	Inhibition of miRNA Maturation by Peptide Nucleic Acids. Methods in Molecular Biology, 2014, 1095, 157-164.	0.9	5
52	Synthesis and Evaluation of Haloacetyl, α-Bromoacryloyl and Nitrooxyacetyl Benzo[b]furan and Benzo[b]thiophene Derivatives as Potent Antiproliferative Agents Against Leukemia L1210 and K562 Cells. Letters in Drug Design and Discovery, 2010, 7, 476-486.	0.7	5
53	Gene Modulation by Peptide Nucleic Acids (PNAs) Targeting microRNAs (miRs). , 0, , .		4
54	"Lab-on-a-Chip―Devices for Cellular Arrays Based on Dielectrophoresis. , 2007, , 231-243.		4

4

ENRICA FABBRI

#	Article	IF	CITATIONS
55	Peptide nucleic acids targeting \hat{l}^2 -globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells. International Journal of Molecular Medicine, 2015, 35, 51-58.	4.0	3
56	Differential effects on the miRNome of the treatment of human airway epithelial Calu-3 cells with peptide-nucleic acids (PNAs) targeting microRNAs miR-101-3p and miR-145-5p: Next generation sequencing datasets. Data in Brief, 2021, 35, 106718.	1.0	3
57	Generation and Characterization of a Transgenic Mouse Carrying a Functional Human $\hat{1}^2$ -Globin Gene with the IVSI-6 Thalassemia Mutation. BioMed Research International, 2015, 2015, 1-20.	1.9	2
58	Design, Synthesis and Biological Evaluation of Hybrid Molecules Containing Conjugated Styryl Ketone and α-Bromoacryloyl Moieties. Letters in Drug Design and Discovery, 2012, 9, 140-152.	0.7	2
59	Surface plasmon resonance based analysis of the binding of LYAR protein to the rs368698783 (G>A) polymorphic Aγ-globin gene sequences mutated in β-thalassemia. Analytical and Bioanalytical Chemistry, 2019, 411, 7699-7707.	3.7	1
60	Synthesis and Biological Evaluation of a Series of 2-(3,4,5-Trimethoxybenzoyl)-Indol-3-yl Acetic Acid Derivatives as Potential Agents against Human Leukemia K562 Cells. Letters in Drug Design and Discovery, 2008, 5, 214-220.	0.7	1