Chyung-Ru Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102114/publications.pdf

Version: 2024-02-01

76326 60623 7,244 83 40 81 citations h-index g-index papers 88 88 88 7953 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Structure and dynamics of major histocompatibility class Ib molecule H2-M3 complexed with mitochondrial-derived peptides. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10300-10312.	3.5	1
2	Role of Group 1 CD1-restricted T Cells in Host Defense and Inflammatory Diseases. Critical Reviews in Immunology, 2021, 41, 1-21.	0.5	3
3	Mitochondrial metabolism is essential for invariant natural killer T cell development and function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
4	CD1-Restricted T Cells in Inflammatory Skin Diseases. Journal of Investigative Dermatology, 2021, , .	0.7	2
5	Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Frontiers in Immunology, 2020, 11, 610010.	4.8	8
6	USP22 controls iNKT immunity through MED1 suppression of histone H2A monoubiquitination. Journal of Experimental Medicine, 2020, 217, .	8. 5	15
7	Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathogens, 2020, 16, e1008443.	4.7	11
8	Invariant Natural Killer T-Cells and Total CD1d Restricted Cells Differentially Influence Lipid Metabolism and Atherosclerosis in Low Density Receptor Deficient Mice. International Journal of Molecular Sciences, 2019, 20, 4566.	4.1	5
9	Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell, 2018, 172, 784-796.e18.	28.9	323
10	Induction of Mycobacterium Tuberculosis Lipid-Specific T Cell Responses by Pulmonary Delivery of Mycolic Acid-Loaded Polymeric Micellar Nanocarriers. Frontiers in Immunology, 2018, 9, 2709.	4.8	37
11	Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Frontiers in Immunology, 2018, 9, 1616.	4.8	17
12	The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Reports, 2017, 20, 600-612.	6.4	30
13	Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease. Journal of Hepatology, 2017, 67, 791-800.	3.7	31
14	CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. Journal of Clinical Investigation, 2017, 127, 2339-2352.	8.2	59
15	MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathogens, 2017, 13, e1006384.	4.7	47
16	CD1b-autoreactive T cells recognize phospholipid antigens and contribute to antitumor immunity against a CD1b ⁺ T cell lymphoma. Oncolmmunology, 2016, 5, e1213932.	4.6	22
17	Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection. PLoS Pathogens, 2016, 12, e1005688.	4.7	20
18	Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Frontiers in Immunology, 2015, 6, 337.	4.8	39

#	Article	IF	Citations
19	Pak2 Controls Acquisition of NKT Cell Fate by Regulating Expression of the Transcription Factors PLZF and Egr2. Journal of Immunology, 2015, 195, 5272-5284.	0.8	8
20	Mycolic acid-specific T cells protect against Mycobacterium tuberculosis infection in a humanized transgenic mouse model. ELife, $2015, 4, \ldots$	6.0	55
21	The adaptor protein SAP regulates type II NKTâ€cell development, cytokine production, and cytotoxicity against lymphoma. European Journal of Immunology, 2014, 44, 3646-3657.	2.9	11
22	Type II natural killer T cells foster the antitumor activity of CpG-oligodeoxynucleotides. Oncolmmunology, 2014, 3, e28977.	4.6	5
23	Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2674-2679.	7.1	61
24	Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity, 2013, 38, 225-236.	14.3	981
25	The Functions of Type I and Type II Natural Killer T Cells in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2013, 19, 1330-1338.	1.9	53
26	SAP Is Required for the Development of Innate Phenotype in H2-M3–Restricted CD8+ T Cells. Journal of Immunology, 2012, 189, 4787-4796.	0.8	10
27	Dysregulation of CD1d-Restricted Type II Natural Killer T Cells Leads to Spontaneous Development of Colitis in Mice. Gastroenterology, 2012, 142, 326-334.e2.	1.3	65
28	Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nature Immunology, 2012, 13, 1171-1177.	14.5	49
29	Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood, 2011, 117, 1880-1887.	1.4	48
30	Autoreactive CD1b-restricted T cells: a new innate-like T-cell population that contributes to immunity against infection. Blood, 2011, 118, 3870-3878.	1.4	38
31	Positive selecting cell type determines the phenotype of MHC class lb-restricted CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13241-13246.	7.1	27
32	Nonconventional CD8+ T Cell Responses to <i>Listeria</i> Infection in Mice Lacking MHC Class Ia and H2-M3. Journal of Immunology, 2011, 186, 489-498.	0.8	17
33	CD1d-Expressing Breast Cancer Cells Modulate NKT Cell-Mediated Antitumor Immunity in a Murine Model of Breast Cancer Metastasis. PLoS ONE, 2011, 6, e20702.	2.5	85
34	CD1d Expression in Paneth Cells and Rat Exocrine Pancreas Revealed by Novel Monoclonal Antibodies Which Differentially Affect NKT Cell Activation. PLoS ONE, 2010, 5, e13089.	2.5	15
35	Abstract B21: CD1 d-expressing breast cancer cells promote iNKT-mediated antitumor immunity in a mouse model of breast cancer bone metastasis. , 2010, , .		0
36	Polymorphisms in CD1d affect antigen presentation and the activation of CD1d-restricted T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1909-1914.	7.1	33

#	Article	IF	CITATIONS
37	CD1-restricted adaptive immune responses to <i>Mycobacteria</i> in human group 1 CD1 transgenic mice. Journal of Experimental Medicine, 2009, 206, 2497-2509.	8.5	105
38	Antagonistic Effect of Toll-Like Receptor Signaling and Bacterial Infections on Transplantation Tolerance. Transplantation, 2009, 87, S77-S79.	1.0	17
39	Prevention of Allograft Tolerance by Bacterial Infection with <i>Listeria monocytogenes</i>). Journal of Immunology, 2008, 180, 5991-5999.	0.8	83
40	An MHC class Ib–restricted CD8 T cell response confers antiviral immunity. Journal of Experimental Medicine, 2008, 205, 1647-1657.	8.5	30
41	Bacterial infection alters the kinetics and function of iNKT cell responses. Journal of Leukocyte Biology, 2008, 84, 1462-1471.	3.3	22
42	Modulation of NKT Cell Development by B7-CD28 Interaction: An Expanding Horizon for Costimulation. PLoS ONE, 2008, 3, e2703.	2.5	24
43	Characterization of the Natural Killer T-Cell Response in an Adoptive Transfer Model of Atherosclerosis. American Journal of Pathology, 2007, 170, 1100-1107.	3.8	71
44	Serine Protease Inhibitor 6 Protects Cytotoxic T Cells from Self-Inflicted Injury by Ensuring the Integrity of Cytotoxic Granules. Immunity, 2006, 24, 451-461.	14.3	107
45	H2–M3-restricted T cell response to infection. Microbes and Infection, 2006, 8, 2277-2283.	1.9	25
46	Impaired response to Listeria in H2-M3–deficient mice reveals a nonredundant role of MHC class Ib–specific T cells in host defense. Journal of Experimental Medicine, 2006, 203, 449-459.	8.5	52
47	A Cell-Type Specific CD1d Expression Program Modulates Invariant NKT Cell Development and Function. Journal of Immunology, 2006, 176, 1421-1430.	0.8	40
48	Activating Transcription Factor/cAMP Response Element Binding Protein Family Member Regulated Transcription of CD1A. Journal of Immunology, 2006, 177, 7024-7032.	0.8	17
49	IFN-β-Mediated Up-Regulation of CD1d in Bacteria-Infected APCs. Journal of Immunology, 2006, 177, 7841-7848.	0.8	43
50	Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. Journal of Clinical Investigation, 2006, 116, 1045-1051.	8.2	62
51	Long-term loss of canonical NKT cells following an acute virus infection. European Journal of Immunology, 2005, 35, 879-889.	2.9	45
52	The natural killer T?cell ligand ?-galactosylceramide prevents or promotes pristane-induced lupus in mice. European Journal of Immunology, 2005, 35, 1143-1154.	2.9	81
53	Transcriptional Regulation of <i>CD1D1 </i> by Ets Family Transcription Factors. Journal of Immunology, 2005, 175, 1022-1029.	0.8	32
54	Glycolipid antigen induces long-term natural killer T cell anergy in mice. Journal of Clinical Investigation, 2005, 115, 2572-2583.	8.2	386

#	Article	IF	CITATIONS
55	Quantitative and Qualitative Differences in the In Vivo Response of NKT Cells to Distinct α- and β-Anomeric Glycolipids. Journal of Immunology, 2004, 173, 3693-3706.	0.8	136
56	Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3242-3247.	7.1	109
57	CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. European Journal of Immunology, 2004, 34, 1723-1732.	2.9	58
58	The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10913-10918.	7.1	306
59	Expression of CD1d Under the Control of a MHC Class Ia Promoter Skews the Development of NKT Cells, But Not CD8+ T Cells. Journal of Immunology, 2003, 171, 4105-4112.	0.8	25
60	CD1d-expressing Dendritic Cells but Not Thymic Epithelial Cells Can Mediate Negative Selection of NKT Cells. Journal of Experimental Medicine, 2003, 197, 907-918.	8.5	122
61	Functional Roles of TAP and Tapasin in the Assembly of M3- <i>N</i> -Formylated Peptide Complexes. Journal of Immunology, 2001, 167, 1507-1514.	0.8	32
62	Cd1-Restricted Nk T Cells Protect Nonobese Diabetic Mice from Developing Diabetes. Journal of Experimental Medicine, 2001, 194, 313-320.	8.5	251
63	Human CD1d Functions as a Transplantation Antigen and a Restriction Element in Mice. Journal of Immunology, 2001, 166, 3829-3836.	0.8	15
64	Tapasin Enhances Peptide-Induced Expression of H2-M3 Molecules, but Is Not Required for the Retention of Open Conformers. Journal of Immunology, 2001, 167, 2097-2105.	0.8	37
65	Induction of M3-Restricted Cytotoxic T Lymphocyte Responses by N-Formylated Peptides Derived from Mycobacterium tuberculosis. Journal of Experimental Medicine, 2001, 193, 1213-1220.	8.5	65
66	CD1d-Specific NK1.1+ T Cells with a Transgenic Variant TCR. Journal of Immunology, 2000, 165, 168-174.	0.8	74
67	Tracking the Response of Natural Killer T Cells to a Glycolipid Antigen Using Cd1d Tetramers. Journal of Experimental Medicine, 2000, 192, 741-754.	8.5	818
68	Comparative Contribution of CD1 on the Development of CD4+ and CD8+ T Cell Compartments. Journal of Immunology, 2000, 164, 739-745.	0.8	10
69	Cutting Edge: The Ets1 Transcription Factor Is Required for the Development of NK T Cells in Mice. Journal of Immunology, 2000, 164, 2857-2860.	0.8	86
70	MHC Class Ib-Restricted CTL Provide Protection Against Primary and Secondary <i>Listeria monocytogenes </i> Infection. Journal of Immunology, 2000, 165, 5192-5201.	0.8	73
71	Affinity of thymic self-peptides for the TCR determines the selection of CD8+ T lymphocytes in the thymus. International Immunology, 2000, 12, 1353-1363.	4.0	19
72	The Selection of M3-Restricted T Cells Is Dependent on M3 Expression and Presentation of N-Formylated Peptides in the Thymus. Journal of Experimental Medicine, 1999, 190, 1869-1878.	8.5	39

#	Article	IF	CITATIONS
73	Susceptibility of Mice Deficient in CD1D or TAP1 to Infection with Mycobacterium tuberculosis. Journal of Experimental Medicine, 1999, 189, 1973-1980.	8.5	329
74	The Majority of H2-M3 Is Retained Intracellularly in a Peptide-Receptive State and Traffics to the Cell Surface in the Presence of N-Formylated Peptides. Journal of Experimental Medicine, 1999, 190, 423-434.	8.5	64
75	Selection and Expansion of CD8 $\hat{l}\pm\hat{l}\pm1$ T Cell Receptor $\hat{l}\pm\hat{l}^21$ Intestinal Intraepithelial Lymphocytes in the Absence of Both Classical Major Histocompatibility Complex Class I and Nonclassical Cd1 Molecules. Journal of Experimental Medicine, 1999, 190, 885-890.	8.5	92
76	Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Molecular Immunology, 1998, 35, 525-536.	2.2	82
77	H2-M3, A FULL-SERVICE CLASS IbHISTOCOMPATIBILITY ANTIGEN. Annual Review of Immunology, 1997, 15, 851-879.	21.8	125
78	Impaired NK1+ T Cell Development and Early IL-4 Production in CD1-Deficient Mice. Immunity, 1997, 6, 459-467.	14.3	440
79	Identification, expression, and crystallization of the proteaseâ€resistant conserved domain of synapsin I. Protein Science, 1997, 6, 2264-2267.	7.6	7
80	Rat RT1 orthologs of mouse H2-M class lb genes. Immunogenetics, 1995, 42, 63-67.	2.4	29
81	Nonclassical binding of formylated peptide in crystal structure of the MHC class lb molecule H2-M3. Cell, 1995, 82, 655-664.	28.9	151
82	Organization and structure of the H-2M4-M8 class I genes in the mouse major histocompatibility complex. Immunogenetics, 1993, 38, 258-71.	2.4	31
83	H-2M3 encodes the MHC Class I molecule presenting the maternally transmitted antigen of the mouse. Cell, 1991, 66, 335-345.	28.9	117