Paula T Hammond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7101986/publications.pdf

Version: 2024-02-01

342 papers 35,574 citations

106 h-index 176 g-index

356 all docs

356 docs citations

356 times ranked

37626 citing authors

#	Article	IF	CITATIONS
1	Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science, 2006, 312, 885-888.	12.6	1,756
2	Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Advanced Materials, 2004, 16, 1271-1293.	21.0	1,177
3	High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 2010, 5, 531-537.	31.5	1,026
4	Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors. ACS Nano, 2010, 4, 3889-3896.	14.6	686
5	Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. Journal of the American Chemical Society, 2009, 131, 671-679.	13.7	598
6	Recent explorations in electrostatic multilayer thin film assembly. Current Opinion in Colloid and Interface Science, 1999, 4, 430-442.	7.4	474
7	The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 1228-1246.	13.7	459
8	Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors. ACS Nano, 2011, 5, 7205-7213.	14.6	458
9	Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and siRNA for Potential Triple-Negative Breast Cancer Treatment. ACS Nano, 2013, 7, 9571-9584.	14.6	448
10	Hydrogen-Bonding Layer-by-Layer-Assembled Biodegradable Polymeric Micelles as Drug Delivery Vehicles from Surfaces. ACS Nano, 2008, 2, 386-392.	14.6	435
11	Self-assembled RNA interference microsponges for efficient siRNA delivery. Nature Materials, 2012, 11, 316-322.	27.5	424
12	Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature, 2020, 585, 603-608.	27.8	420
13	Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure. ACS Nano, 2011, 5, 7108-7116.	14.6	386
14	Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotechnology, 2011, 6, 377-384.	31.5	368
15	Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy and Environmental Science, 2011, 4, 1972.	30.8	346
16	High-Contrast Electrochromism and Controllable Dissolution of Assembled Prussian Blue/Polymer Nanocomposites. Advanced Functional Materials, 2004, 14, 224-232.	14.9	342
17	A Convergent Synthetic Platform for Single-Nanoparticle Combination Cancer Therapy: Ratiometric Loading and Controlled Release of Cisplatin, Doxorubicin, and Camptothecin. Journal of the American Chemical Society, 2014, 136, 5896-5899.	13.7	338
18	Layer-by-Layer Nanoparticles with a pH-Sheddable Layer for <i>in Vivo</i> Targeting of Tumor Hypoxia. ACS Nano, 2011, 5, 4284-4292.	14.6	315

#	Article	IF	CITATIONS
19	Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials, 2006, 5, 234-240.	27.5	308
20	Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer, 2006, 47, 3073-3082.	3.8	308
21	High-Contrast Electrochromism from Layer-By-Layer Polymer Films. Chemistry of Materials, 2003, 15, 1575-1586.	6.7	281
22	Multiple-Color Electrochromism from Layer-by-Layer-Assembled Polyaniline/Prussian Blue Nanocomposite Thin Films. Chemistry of Materials, 2004, 16, 4799-4805.	6.7	279
23	Spraying asymmetry into functional membranes layer-by-layer. Nature Materials, 2009, 8, 512-518.	27.5	279
24	Tunable Drug Release from Hydrolytically Degradable Layer-by-Layer Thin Films. Langmuir, 2005, 21, 1603-1609.	3.5	273
25	Selective Self-Organization of Colloids on Patterned Polyelectrolyte Templates. Langmuir, 2000, 16, 7825-7834.	3.5	271
26	Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials, 2011, 32, 1446-1453.	11.4	270
27	Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid and Interface Science, 2011, 16, 182-194.	7.4	265
28	Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices. Advanced Materials, 2001, 13, 1455-1459.	21.0	261
29	Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10207-10212.	7.1	260
30	Building biomedical materials layer-by-layer. Materials Today, 2012, 15, 196-206.	14.2	257
31	Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano, 2011, 5, 8552-8561.	14.6	255
32	Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon, 2011, 49, 457-467.	10.3	250
33	Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials, 2010, 31, 2348-2357.	11.4	249
34	Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter, 2007, 3, 804.	2.7	245
35	Construction of Hydrolytically-Degradable Thin Films via Layer-by-Layer Deposition of Degradable Polyelectrolytes. Journal of the American Chemical Society, 2002, 124, 13992-13993.	13.7	243
36	Polymer multilayer tattooing for enhanced DNAÂvaccination. Nature Materials, 2013, 12, 367-376.	27.5	242

#	Article	IF	CITATIONS
37	Highly Efficient "Grafting onto―a Polypeptide Backbone Using Click Chemistry. Angewandte Chemie - International Edition, 2009, 48, 9334-9338.	13.8	238
38	Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nature Communications, 2014, 5, 5460.	12.8	231
39	Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nature Communications, 2018, 9, 1991.	12.8	229
40	Cationic Peptidopolysaccharides Show Excellent Broadâ€Spectrum Antimicrobial Activities and High Selectivity. Advanced Materials, 2012, 24, 4130-4137.	21.0	226
41	Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip. Journal of the American Chemical Society, 2017, 139, 2741-2749.	13.7	226
42	Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano, 2014, 8, 1500-1510.	14.6	217
43	Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes. ACS Nano, 2011, 5, 5167-5174.	14.6	215
44	Elastomeric Flexible Free-Standing Hydrogen-Bonded Nanoscale Assemblies. Journal of the American Chemical Society, 2005, 127, 17228-17234.	13.7	214
45	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	14.6	211
46	Exponential Growth of LBL Films with Incorporated Inorganic Sheets. Nano Letters, 2008, 8, 1762-1770.	9.1	210
47	Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries. Journal of Physical Chemistry Letters, 2014, 5, 2850-2856.	4.6	210
48	Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials, 2011, 32, 6183-6193.	11.4	208
49	Two Component Particle Arrays on Patterned Polyelectrolyte Multilayer Templates. Advanced Materials, 2002, 14, 569.	21.0	201
50	Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS Nano, 2016, 10, 4441-4450.	14.6	193
51	Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Science Translational Medicine, 2018, 10, .	12.4	183
52	Understanding the Chemical Stability of Polymers for Lithium–Air Batteries. Chemistry of Materials, 2015, 27, 550-561.	6.7	182
53	Engineering materials layerâ€byâ€layer: Challenges and opportunities in multilayer assembly. AICHE Journal, 2011, 57, 2928-2940.	3.6	179
54	Highly Ion Conductive Poly(ethylene oxide)-Based Solid Polymer Electrolytes from Hydrogen Bonding Layer-by-Layer Assembly. Langmuir, 2004, 20, 5403-5411.	3.5	177

#	Article	IF	CITATIONS
55	Controlling in Vivo Stability and Biodistribution in Electrostatically Assembled Nanoparticles for Systemic Delivery. Nano Letters, 2011, 11, 2096-2103.	9.1	176
56	Selfâ€Assembled Wound Dressings Silence MMPâ€9 and Improve Diabetic Wound Healing In Vivo. Advanced Materials, 2016, 28, 1809-1817.	21.0	174
57	A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways. Science Signaling, 2014, 7, ra44.	3.6	172
58	Releasable Layer-by-Layer Assembly of Stabilized Lipid Nanocapsules on Microneedles for Enhanced Transcutaneous Vaccine Delivery. ACS Nano, 2012, 6, 8041-8051.	14.6	170
59	Polyelectrolyte Multilayers for Tunable Release of Antibiotics. Biomacromolecules, 2008, 9, 1660-1668.	5.4	169
60	Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5179-5184.	7.1	166
61	Controlling Mammalian Cell Interactions on Patterned Polyelectrolyte Multilayer Surfaces. Langmuir, 2004, 20, 1362-1368.	3.5	165
62	lonic Effects of Sodium Chloride on the Templated Deposition of Polyelectrolytes Using Layer-by-Layer lonic Assembly. Macromolecules, 1997, 30, 7237-7244.	4.8	162
63	A Family of Hierarchically Self-Assembling Linear-Dendritic Hybrid Polymers for Highly Efficient Targeted Gene Delivery. Angewandte Chemie - International Edition, 2005, 44, 6704-6708.	13.8	162
64	Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells. Nano Letters, 2013, 13, 637-642.	9.1	162
65	Bimodal Tumor-Targeting from Microenvironment Responsive Hyaluronan Layer-by-Layer (LbL) Nanoparticles. ACS Nano, 2014, 8, 8374-8382.	14.6	161
66	Layerâ€byâ€Layer Platform Technology for Smallâ€Molecule Delivery. Angewandte Chemie - International Edition, 2009, 48, 8974-8977.	13.8	160
67	The Role of Secondary Interactions in Selective Electrostatic Multilayer Deposition. Langmuir, 2000, 16, 10206-10214.	3.5	159
68	Formation of Polymer Microstructures by Selective Deposition of Polyion Multilayers Using Patterned Self-Assembled Monolayers as a Template. Macromolecules, 1995, 28, 7569-7571.	4.8	156
69	Engineering the Microfabrication of Layer-by-Layer Thin Films. Advanced Materials, 1998, 10, 1515-1519.	21.0	155
70	Layer-by-Layer-Assembled Multilayer Films for Transcutaneous Drug and Vaccine Delivery. ACS Nano, 2009, 3, 3719-3729.	14.6	154
71	Sprayâ€Layerâ€byâ€Layer Carbon Nanotube/Electrospun Fiber Electrodes for Flexible Chemiresistive Sensor Applications. Advanced Functional Materials, 2014, 24, 492-502.	14.9	148
72	Highly Reactive Multilayerâ€Assembled TiO ₂ Coating on Electrospun Polymer Nanofibers. Advanced Materials, 2009, 21, 1252-1256.	21.0	147

#	Article	IF	CITATIONS
73	The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials, 2010, 31, 6019-6030.	11.4	147
74	Composite Dissolving Microneedles for Coordinated Control of Antigen and Adjuvant Delivery Kinetics in Transcutaneous Vaccination. Advanced Functional Materials, 2013, 23, 161-172.	14.9	147
75	Nanoâ€Layered Microneedles for Transcutaneous Delivery of Polymer Nanoparticles and Plasmid DNA. Advanced Materials, 2010, 22, 4851-4856.	21.0	145
76	Stamped microbattery electrodes based on self-assembled M13 viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17227-17231.	7.1	144
77	Tunable Nanostructured Coating for the Capture and Selective Release of Viable Circulating Tumor Cells. Advanced Materials, 2015, 27, 1593-1599.	21.0	144
78	Controlled Cluster Size in Patterned Particle Arrays via Directed Adsorption on Confined Surfaces. Advanced Materials, 2002, 14, 572.	21.0	143
79	Fast Ion Conduction in Layer-By-Layer Polymer Films. Chemistry of Materials, 2003, 15, 1165-1173.	6.7	142
80	Multilayer Transfer Printing for Polyelectrolyte Multilayer Patterning: Direct Transfer of Layer-by-Layer Assembled Micropatterned Thin Films. Advanced Materials, 2004, 16, 520-525.	21.0	142
81	Layer-by-Layer Biomaterials for Drug Delivery. Annual Review of Biomedical Engineering, 2020, 22, 1-24.	12.3	142
82	Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery. Chemical Communications, 2009, , 4194.	4.1	141
83	Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16473-16478.	7.1	141
84	Synthesis and Solution Properties of New Linear-Dendritic Diblock Copolymers. Macromolecules, 1998, 31, 8757-8765.	4.8	140
85	Implantable Silk Composite Microneedles for Programmable Vaccine Release Kinetics and Enhanced Immunogenicity in Transcutaneous Immunization. Advanced Healthcare Materials, 2014, 3, 47-58.	7.6	139
86	Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials, 2014, 35, 2507-2517.	11.4	138
87	Polymer-on-Polymer Stamping:Â Universal Approaches to Chemically Patterned Surfaces. Langmuir, 2002, 18, 2607-2615.	3.5	137
88	Controlling the Location and Spatial Extent of Nanobubbles Using Hydrophobically Nanopatterned Surfaces. Nano Letters, 2005, 5, 1751-1756.	9.1	135
89	Solid-State Photovoltaic Thin Films using TiO2, Organic Dyes, and Layer-by-Layer Polyelectrolyte Nanocomposites. Advanced Functional Materials, 2003, 13, 831-839.	14.9	131
90	Effects of Side Group Functionality and Molecular Weight on the Activity of Synthetic Antimicrobial Polypeptides. Biomacromolecules, 2011, 12, 1666-1674.	5.4	130

#	Article	IF	CITATIONS
91	Designing a New Generation of Proton-Exchange Membranes Using Layer-by-Layer Deposition of Polyelectrolytes. Advanced Functional Materials, 2005, 15, 945-954.	14.9	129
92	Highly Conductive, Methanol Resistant Polyelectrolyte Multilayers. Advanced Materials, 2008, 20, 1539-1543.	21.0	128
93	Electroactive controlled release thin films. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2280-2285.	7.1	128
94	Electrochemically Controlled Swelling and Mechanical Properties of a Polymer Nanocomposite. ACS Nano, 2009, 3, 2207-2216.	14.6	128
95	Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12847-12852.	7.1	128
96	Hemostatic Multilayer Coatings. Advanced Materials, 2012, 24, 492-496.	21.0	127
97	Extended Release Antibacterial Layer-by-Layer Films Incorporating Linear-Dendritic Block Copolymer Micelles. Chemistry of Materials, 2007, 19, 5524-5530.	6.7	126
98	Ligandâ€Clustered "Patchy―Nanoparticles for Modulated Cellular Uptake and In Vivo Tumor Targeting. Angewandte Chemie - International Edition, 2010, 49, 7266-7270.	13.8	125
99	Enhanced exÂvivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials, 2014, 35, 4046-4057.	11.4	123
100	Graphene Multilayers as Gates for Multi-Week Sequential Release of Proteins from Surfaces. ACS Nano, 2012, 6, 81-88.	14.6	122
101	Clotting Mimicry from Robust Hemostatic Bandages Based on Self-Assembling Peptides. ACS Nano, 2015, 9, 9394-9406.	14.6	118
102	Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials, 2010, 31, 4079-4087.	11.4	112
103	Engineering nanolayered particles for modular drug delivery. Journal of Controlled Release, 2016, 240, 364-386.	9.9	112
104	Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Science Translational Medicine, 2018, 10, .	12.4	111
105	Release of a model protein from biodegradable self assembled films for surface delivery applications. Journal of Controlled Release, 2008, 131, 228-234.	9.9	110
106	Characterization of Tunable FGF-2 Releasing Polyelectrolyte Multilayers. Biomacromolecules, 2010, 11, 2053-2059.	5.4	110
107	Electrically Triggered Release of a Small Molecule Drug from a Polyelectrolyte Multilayer Coating. Chemistry of Materials, 2010, 22, 6416-6425.	6.7	109
108	Surface-Mediated Bone Tissue Morphogenesis from Tunable Nanolayered Implant Coatings. Science Translational Medicine, 2013, 5, 191ra83.	12.4	109

#	Article	IF	CITATIONS
109	Osteophilic Multilayer Coatings for Accelerated Bone Tissue Growth. Advanced Materials, 2012, 24, 1445-1450.	21.0	108
110	Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics. ACS Nano, 2014, 8, 9767-9780.	14.6	107
111	The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries. Energy and Environmental Science, 2017, 10, 1828-1842.	30.8	107
112	Selective Deposition in Layer-by-Layer Assembly:Â Functional Graft Copolymers as Molecular Templates. Langmuir, 2000, 16, 8501-8509.	3 . 5	100
113	Effect of the Layer-by-Layer (LbL) Deposition Method on the Surface Morphology and Wetting Behavior of Hydrophobically Modified PEO and PAA LbL Films. Langmuir, 2008, 24, 7995-8000.	3.5	95
114	Nano- and Microporous Layer-by-Layer Assemblies Containing Linear Poly(ethylenimine) and Poly(acrylic acid). Macromolecules, 2008, 41, 6047-6054.	4.8	94
115	Dual Functional Polyelectrolyte Multilayer Coatings for Implants: Permanent Microbicidal Base with Controlled Release of Therapeutic Agents. Journal of the American Chemical Society, 2010, 132, 17840-17848.	13.7	94
116	Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy and Environmental Science, 2014, 7, 3659-3665.	30.8	94
117	Particle Assembly on Patterned "Plus/Minus―Polyelectrolyte Surfaces via Polymer-on-Polymer Stamping. Langmuir, 2002, 18, 4505-4510.	3.5	93
118	All-Star Polymer Multilayers as pH-Responsive Nanofilms. Macromolecules, 2009, 42, 368-375.	4.8	93
119	Drastically Lowered Protein Adsorption on Microbicidal Hydrophobic/Hydrophilic Polyelectrolyte Multilayers. Biomacromolecules, 2012, 13, 719-726.	5.4	93
120	Scalable Manufacture of Builtâ€toâ€Order Nanomedicine: Sprayâ€Assisted Layerâ€byâ€Layer Functionalization of PRINT Nanoparticles. Advanced Materials, 2013, 25, 4707-4713.	21.0	92
121	MAD (Multiagent Delivery) Nanolayer: Delivering Multiple Therapeutics from Hierarchically Assembled Surface Coatings. Langmuir, 2009, 25, 14086-14092.	3.5	91
122	Mechanism of inactivation of influenza viruses by immobilized hydrophobic polycations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 61-66.	7.1	91
123	The architecture and biological performance of drug-loaded LbL nanoparticles. Biomaterials, 2013, 34, 5328-5335.	11.4	90
124	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	12.8	88
125	RNAiâ€Microsponges Form through Selfâ€Assembly of the Organic and Inorganic Products of Transcription. Small, 2014, 10, 1623-1633.	10.0	86
126	A Multiâ€RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs. Angewandte Chemie - International Edition, 2016, 55, 3347-3351.	13.8	86

#	Article	IF	Citations
127	Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo Using Layerâ€by‣ayer Nanoparticles. Advanced Functional Materials, 2019, 29, 1900018.	14.9	86
128	Tunable Vancomycin Releasing Surfaces for Biomedical Applications. Small, 2010, 6, 2392-2404.	10.0	85
129	Enhanced Stability of Polymeric Micelles Based on Postfunctionalized Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /	Overlock	10 Tf 50 662 85
130	Vaccine delivery with microneedle skin patches in nonhuman primates. Nature Biotechnology, 2013, 31, 1082-1085.	17.5	85
131	Clickable Synthetic Polypeptidesâ€"Routes to New Highly Adaptive Biomaterials. Chemistry of Materials, 2014, 26, 461-476.	6.7	84
132	Fluorescent Multiblock π onjugated Polymer Nanoparticles for In Vivo Tumor Targeting. Advanced Materials, 2013, 25, 4504-4510.	21.0	82
133	Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy and Environmental Science, 2013, 6, 888.	30.8	79
134	Tumor-Targeted Gene Delivery Using Molecularly Engineered Hybrid Polymers Functionalized with a Tumor-Homing Peptide. Bioconjugate Chemistry, 2008, 19, 403-405.	3.6	78
135	Controlling Surface Mobility in Interdiffusing Polyelectrolyte Multilayers. ACS Nano, 2008, 2, 561-571.	14.6	78
136	Instability of Poly(ethylene oxide) upon Oxidation in Lithium–Air Batteries. Journal of Physical Chemistry C, 2015, 119, 6947-6955.	3.1	77
137	Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano, 2016, 10, 9093-9103.	14.6	77
138	The synthetic tuning of clickable pH responsive cationic polypeptides and block copolypeptides. Soft Matter, 2011, 7, 5627.	2.7	76
139	In vitro blood cell viability profiling of polymers used in molecular assembly. Scientific Reports, 2017, 7, 9481.	3.3	76
140	Factors Influencing the Interdiffusion of Weak Polycations in Multilayers. Macromolecules, 2007, 40, 9523-9528.	4.8	75
141	Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior. Macromolecules, 2011, 44, 612-621.	4.8	74
142	Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds for skin tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 330-340.	4.0	74
143	Structurally Programmed Assembly of Translation Initiation Nanoplex for Superior mRNA Delivery. ACS Nano, 2017, 11, 2531-2544.	14.6	74
144	A Morphological Study of Well-Defined Smectic Side-Chain LC Block Copolymers. Macromolecules, 1999, 32, 4838-4848.	4.8	73

#	Article	IF	CITATIONS
145	Amphiphilic Linear-Dendritic Triblock Copolymers Composed of Poly(amidoamine) and Poly(propylene) Tj ETQq1 1	9.784314	1 rgBT /Ove
146	Comb-Dendritic Block Copolymers as Tree-Shaped Macromolecular Amphiphiles for Nanoparticle Self-Assembly. Chemistry of Materials, 2006, 18, 3976-3984.	6.7	73
147	Multifunctional Electrospun Fabrics via Layer-by-Layer Electrostatic Assembly for Chemical and Biological Protection. Chemistry of Materials, 2010, 22, 1429-1436.	6.7	73
148	Design of multi-drug release coatings targeting infection and inflammation. Journal of Controlled Release, 2011, 155, 159-166.	9.9	72
149	Synthetic Charge-Invertible Polymer for Rapid and Complete Implantation of Layer-by-Layer Microneedle Drug Films for Enhanced Transdermal Vaccination. ACS Nano, 2018, 12, 10272-10280.	14.6	72
150	Anisotropic Structure and Transport in Self-Assembled Layered Polymerâ-'Clay Nanocomposites. Langmuir, 2007, 23, 8515-8521.	3.5	70
151	PEG–Polypeptide Block Copolymers as pH-Responsive Endosome-Solubilizing Drug Nanocarriers. Molecular Pharmaceutics, 2014, 11, 2420-2430.	4.6	70
152	Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. Biomaterials, 2015, 65, 93-102.	11.4	70
153	Langmuir Behavior and Ultrathin Films of New Linearâ^'Dendritic Diblock Copolymers. Langmuir, 1999, 15, 1299-1306.	3.5	69
154	Osteotropic Therapy via Targeted Layerâ€by‣ayer Nanoparticles. Advanced Healthcare Materials, 2014, 3, 867-875.	7.6	68
155	A Combination RNAi-Chemotherapy Layer-by-Layer Nanoparticle for Systemic Targeting of KRAS/P53 with Cisplatin to Treat Non–Small Cell Lung Cancer. Clinical Cancer Research, 2017, 23, 7312-7323.	7.0	68
156	Controlling Diffusion and Exchange in Layer-by-Layer Assemblies. Macromolecules, 2007, 40, 1598-1603.	4.8	67
157	FRET-enabled biological characterization of polymeric micelles. Biomaterials, 2014, 35, 3489-3496.	11.4	67
158	Highly Scalable, Closed‣oop Synthesis of Drug‣oaded, Layerâ€by‣ayer Nanoparticles. Advanced Functional Materials, 2016, 26, 991-1003.	14.9	67
159	Catechol-Modified Polyions in Layer-by-Layer Assembly to Enhance Stability and Sustain Release of Biomolecules: A Bioinspired Approach. Chemistry of Materials, 2011, 23, 5349-5357.	6.7	65
160	Highly stable, ligand-clustered "patchy―micelle nanocarriers for systemic tumor targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 201-209.	3.3	65
161	Release of vancomycin from multilayer coated absorbent gelatin sponges. Journal of Controlled Release, 2012, 157, 64-71.	9.9	65
162	Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry. ACS Nano, 2020, 14, 2224-2237.	14.6	64

#	Article	IF	Citations
163	Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy. Cancer Discovery, 2021, 11, 384-407.	9.4	64
164	Controlling Cell Attachment Selectively onto Biological Polymerâ "Colloid Templates Using Polymer-on-Polymer Stamping. Langmuir, 2004, 20, 7215-7222.	3.5	62
165	Phase Behavior of New Side Chain Smectic C* Liquid Crystalline Block Copolymers. Macromolecules, 1998, 31, 711-721.	4.8	61
166	Layer-by-Layer Assembled Solid Polymer Electrolyte for Electrochromic Devices. Chemistry of Materials, 2011, 23, 2142-2149.	6.7	61
167	Preferential Association of Segment Blocks in Polyurethane Nanocomposites. Macromolecules, 2006, 39, 7030-7036.	4.8	60
168	Inherent Charge-Shifting Polyelectrolyte Multilayer Blends: A Facile Route for Tunable Protein Release from Surfaces. Biomacromolecules, 2011, 12, 2975-2981.	5.4	60
169	Dual Responsiveness of a Tunable Thermosensitive Polypeptide. ACS Macro Letters, 2012, 1, 727-731.	4.8	60
170	Spray Layerâ€byâ€Layer Electrospun Composite Proton Exchange Membranes. Advanced Functional Materials, 2013, 23, 3087-3095.	14.9	59
171	Solution Conditions Tune and Optimize Loading of Therapeutic Polyelectrolytes into Layer-by-Layer Functionalized Liposomes. ACS Nano, 2019, 13, 5623-5634.	14.6	57
172	Deep-tissue optical imaging of near cellular-sized features. Scientific Reports, 2019, 9, 3873.	3.3	57
173	Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials, 2020, 243, 119921.	11.4	57
174	Li-Anode Protective Layers for Li Rechargeable Batteries via Layer-by-Layer Approaches. Chemistry of Materials, 2014, 26, 2579-2585.	6.7	56
175	Engineering Ionic and Electronic Conductivity in Polymer Catalytic Electrodes Using the Layer-By-Layer Technique. Chemistry of Materials, 2006, 18, 41-49.	6.7	55
176	Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle. Clinical Cancer Research, 2015, 21, 4410-4419.	7.0	55
177	Theranostic Layerâ€byâ€Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angewandte Chemie - International Edition, 2020, 59, 2776-2783.	13.8	55
178	Enhanced Photocatalytic Activity using Layerâ€byâ€Layer Electrospun Constructs for Water Remediation. Advanced Functional Materials, 2010, 20, 2424-2429.	14.9	54
179	Rationally Designed Polycationic Carriers for Potent Polymeric siRNA-Mediated Gene Silencing. ACS Nano, 2018, 12, 6504-6514.	14.6	54
180	Nonlithographic Micro- and Nanopatterning of TiO2 Using Polymer Stamped Molecular Templates. Langmuir, 2004, 20, 1436-1441.	3.5	53

#	Article	IF	CITATIONS
181	Microphase Segregation of PEOâ^'PAMAM Linearâ^'Dendritic Diblock Copolymers. Macromolecules, 2004, 37, 2490-2501.	4.8	53
182	Capillary Flow Layer-by-Layer: A Microfluidic Platform for the High-Throughput Assembly and Screening of Nanolayered Film Libraries. ACS Nano, 2014, 8, 6580-6589.	14.6	53
183	The influence of transition metal oxides on the kinetics of Li ₂ O ₂ oxidation in Li–O ₂ batteries: high activity of chromium oxides. Physical Chemistry Chemical Physics, 2014, 16, 2297-2304.	2.8	52
184	Novel Solid-State Polymer Electrolyte Consisting of a Porous Layer-by-Layer Polyelectrolyte Thin Film and Oligoethylene Glycol. Langmuir, 2004, 20, 9791-9795.	3 . 5	51
185	Pattern Transfer Printing of Multiwalled Carbon Nanotube Multilayers and Application in Biosensors. Chemistry of Materials, 2010, 22, 4791-4797.	6.7	51
186	Multimonth controlled small molecule release from biodegradable thin films. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12175-12180.	7.1	51
187	A SAXS Study of Microstructure Ordering Transitions in Liquid Crystalline Side-Chain Diblock Copolymers. Macromolecules, 1999, 32, 8066-8076.	4.8	50
188	Polyamineâ€Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angewandte Chemie - International Edition, 2017, 56, 13709-13712.	13.8	50
189	Green fluorescent proteins engineered for cartilage-targeted drug delivery: Insights for transport into highly charged avascular tissues. Biomaterials, 2018, 183, 218-233.	11.4	50
190	Evaluation and Stability of PEDOT Polymer Electrodes for Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2016, 7, 3770-3775.	4.6	49
191	Room Temperature Rapid Photoresponsive Azobenzene Side Chain Liquid Crystal Polymer. Macromolecules, 2011, 44, 8880-8885.	4.8	48
192	Multilayer Films Assembled from Naturally-Derived Materials for Controlled Protein Release. Biomacromolecules, 2014, 15, 2049-2057.	5 . 4	47
193	Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content. Nano Letters, 2008, 8, 3434-3440.	9.1	46
194	A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	46
195	Nanolayered siRNA Dressing for Sustained Localized Knockdown. ACS Nano, 2013, 7, 5251-5261.	14.6	45
196	Cancer Cell Coating Nanoparticles for Optimal Tumor-Specific Cytokine Delivery. ACS Nano, 2020, 14, 11238-11253.	14.6	45
197	M13 Virus-Enabled Synthesis of Titanium Dioxide Nanowires for Tunable Mesoporous Semiconducting Networks. Chemistry of Materials, 2015, 27, 1531-1540.	6.7	44
198	Polyelectrolyte multilayered nanoparticles: using nanolayers for controlled and targeted systemic release. Nanomedicine, 2012, 7, 619-622.	3.3	43

#	Article	IF	CITATIONS
199	Synthesis of a New, Low- <i>T</i> _g Siloxane Thermoplastic Elastomer with a Functionalizable Backbone and Its Use as a Rapid, Room Temperature Photoactuator. Macromolecules, 2013, 46, 2823-2832.	4.8	43
200	Influence of pH and Surface Chemistry on Poly(<scp>I</scp> -lysine) Adsorption onto Solid Supports Investigated by Quartz Crystal Microbalance with Dissipation Monitoring. Journal of Physical Chemistry B, 2015, 119, 10554-10565.	2.6	43
201	A Highly Conductive and Mechanically Robust OH ^{â€"} Conducting Membrane for Alkaline Water Electrolysis. Chemistry of Materials, 2018, 30, 6420-6430.	6.7	43
202	Tailored Micropatterns through Weak Polyelectrolyte Stamping. Langmuir, 2003, 19, 2231-2237.	3.5	42
203	Engineering Strategies for Immunomodulatory Cytokine Therapies: Challenges and Clinical Progress. Advanced Therapeutics, 2021, 4, 2100035.	3.2	42
204	Observation of Transverse Cylinder Morphology in Side Chain Liquid Crystalline Block Copolymers. Macromolecules, 2007, 40, 777-780.	4.8	41
205	Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Science Advances, 2020, 6, eaba7589.	10.3	41
206	Direct Observation of a Smectic Bilayer Microstructure in Side-Chain Liquid Crystalline Diblock Copolymers. Macromolecules, 2001, 34, 8574-8579.	4.8	40
207	Directed Patterned Adsorption of Magnetic Beads on Polyelectrolyte Multilayers on Glass. Langmuir, 2004, 20, 3028-3031.	3.5	40
208	A Directly Patternable, Clickâ€Active Polymer Film via Initiated Chemical Vapor Deposition. Macromolecular Rapid Communications, 2008, 29, 1648-1654.	3.9	40
209	Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials, 2016, 95, 22-34.	11.4	40
210	One-Electron Mechanism in a Gel–Polymer Electrolyte Li–O ₂ Battery. Chemistry of Materials, 2016, 28, 7167-7177.	6.7	40
211	Multifunctional Self-Assembled Films for Rapid Hemostat and Sustained Anti-infective Delivery. ACS Biomaterials Science and Engineering, 2015, 1, 148-156.	5.2	39
212	Free-energy model of asymmetry in side-chain liquid-crystalline diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2671-2691.	2.1	38
213	Reversible Switching of the Shear Modulus of Photoresponsive Liquid rystalline Polymers. Angewandte Chemie - International Edition, 2009, 48, 3494-3498.	13.8	38
214	Hydrophobic Effects in the Critical Destabilization and Release Dynamics of Degradable Multilayer Films. Chemistry of Materials, 2009, 21, 1108-1115.	6.7	38
215	Structure-property studies of highly conductive layer-by-layer assembled membranes for fuel cell PEM applications. Journal of Materials Chemistry, 2010, 20, 6250.	6.7	37
216	Electrochemically erasable hydrogen-bonded thin films. Chemical Communications, 2010, 46, 7358.	4.1	37

#	Article	IF	Citations
217	Intracellular Trafficking of Polyamidoamine–Poly(ethylene glycol) Block Copolymers in DNA Delivery. Bioconjugate Chemistry, 2011, 22, 1519-1525.	3.6	37
218	Mechanical and Transport Properties of Layer-by-Layer Electrospun Composite Proton Exchange Membranes for Fuel Cell Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8155-8164.	8.0	37
219	Osteoconductive protamine-based polyelectrolyte multilayer functionalized surfaces. Biomaterials, 2011, 32, 7491-7502.	11.4	36
220	Layer-by-layer assembled porous photoanodes for efficient electron collection in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 2217-2224.	10.3	36
221	Mesogen Orientation within Smectic C* Side Chain Liquid Crystalline Diblock Copolymers. Macromolecules, 1998, 31, 2686-2689.	4.8	35
222	Solid-State Dye-Sensitized Solar Cells Combining a Porous TiO2 Film and a Layer-by-Layer Composite Electrolyte. Small, 2005, 1, 1070-1073.	10.0	35
223	Polymer conjugated retinoids for controlled transdermal delivery. Journal of Controlled Release, 2017, 262, 1-9.	9.9	35
224	Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2696-E2705.	7.1	34
225	Broad-Spectrum Proteome Editing with an Engineered Bacterial Ubiquitin Ligase Mimic. ACS Central Science, 2019, 5, 852-866.	11.3	34
226	Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
227	Photocatalytic Layer-by-Layer Coatings for Degradation of Acutely Toxic Agents. Chemistry of Materials, 2008, 20, 1924-1930.	6.7	33
228	Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability. Soft Matter, 2012, 8, 10887.	2.7	33
229	Synthesis and Characterization of ABA Triblock Copolymers Containing Smectic C* Liquid Crystal Side Chains via Ring-Opening Metathesis Polymerization Using a Bimetallic Molybdenum Initiator. Macromolecules, 2006, 39, 3993-4000.	4.8	32
230	Synthesis, mechanical properties and chemical/solvent resistance of crosslinked poly(aryl-ether–ether–ketones) at high temperatures. Polymer, 2010, 51, 1914-1920.	3.8	32
231	Synthesis of new smectic C liquid-crystalline block copolymers. Macromolecular Rapid Communications, 1996, 17, 813-824.	3.9	31
232	Development of Surface Morphology in Multilayered Films Prepared by Layer-by-Layer Deposition Using Poly(acrylic acid) and Hydrophobically Modified Poly(ethylene oxide). Macromolecules, 2007, 40, 4028-4036.	4.8	31
233	Thermochromism in Liquid Crystalline Polydiacetylenes. Macromolecules, 1997, 30, 5773-5782.	4.8	30
234	Synthesis and bulk assembly behavior of linear-dendritic rod diblock copolymers. Journal of Polymer Science Part A, 2004, 42, 2784-2814.	2.3	30

#	Article	IF	CITATIONS
235	Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1797-1808.	3.3	30
236	Layerâ€byâ€layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinumâ€based drug resistance therapy in ovarian cancer. Bioengineering and Translational Medicine, 2019, 4, e10131.	7.1	30
237	Temporal release of a three-component protein subunit vaccine from polymer multilayers. Journal of Controlled Release, 2020, 317, 130-141.	9.9	30
238	Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15681-15690.	8.0	29
239	Combination Growth Factor Therapy via Electrostatically Assembled Wound Dressings Improves Diabetic Ulcer Healing In Vivo. Advanced Healthcare Materials, 2015, 4, 2090-2099.	7.6	28
240	Spray Layer-by-Layer Assembled Clay Composite Thin Films as Selective Layers in Reverse Osmosis Membranes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13375-13383.	8.0	28
241	Carbon nanotube–polyaniline core–shell nanostructured hydrogel for electrochemical energy storage. RSC Advances, 2015, 5, 37970-37977.	3.6	28
242	Acceleration of Diabetic Wound Healing with PHD2- and miR-210-Targeting Oligonucleotides. Tissue Engineering - Part A, 2019, 25, 44-54.	3.1	28
243	Sorption isotherms, sorption enthalpies, diffusion coefficients and permeabilities of water in a multilayer PEO/PAA polymer film using the quartz crystal microbalance/heat conduction calorimeter. Thermochimica Acta, 2006, 450, 118-125.	2.7	27
244	Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film. Journal of Chemical Education, 2010, 87, 208-211.	2.3	27
245	Ordered and Kinetically Discrete Sequential Protein Release from Biodegradable Thin Films. Angewandte Chemie - International Edition, 2014, 53, 8093-8098.	13.8	27
246	Metal Ion Reactive Thin Films Using Spray Electrostatic LbL Assembly. Journal of Physical Chemistry B, 2008, 112, 14453-14460.	2.6	26
247	Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 18375-18382.	10.3	26
248	Microneedleâ€based intradermal delivery of stabilized dengue virus. Bioengineering and Translational Medicine, 2019, 4, e10127.	7.1	26
249	Synthesis of ABA Triblock Copolymers via Ring Opening Metathesis Polymerization Using a Bimetallic Initiator:Â Influence of a Flexible Spacer in the Side Chain Liquid Crystalline Block. Macromolecules, 2006, 39, 8241-8249.	4.8	25
250	Influence of variations in liquid-crystalline content upon the self-assembly behavior of siloxane-based block copolymers. Soft Matter, 2008, 4, 1279.	2.7	25
251	Adsorption of hyaluronic acid on solid supports: Role of pH and surface chemistry in thin film self-assembly. Journal of Colloid and Interface Science, 2015, 448, 197-207.	9.4	25
252	Uncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds. Biomacromolecules, 2015, 16, 3774-3783.	5.4	25

#	Article	IF	Citations
253	Rapid and efficient sprayed multilayer films for controlled drug delivery. Journal of Applied Polymer Science, 2016, 133, .	2.6	25
254	Synthesis of polystyrene-polysiloxane side-chain liquid crystalline block copolymers. Macromolecular Rapid Communications, 1998, 19, 573-579.	3.9	24
255	Highly transparent mixed electron and proton conducting polymer membranes. Journal of Materials Chemistry, 2012, 22, 15534.	6.7	24
256	Approaches to Modulate the Chronic Wound Environment Using Localized Nucleic Acid Delivery. Advances in Wound Care, 2021, 10, 503-528.	5.1	24
257	Synthetic nanoscale electrostatic particles as growth factor carriers for cartilage repair. Bioengineering and Translational Medicine, 2016, 1, 347-356.	7.1	23
258	Engineering Helical Modular Polypeptide-Based Hydrogels as Synthetic Extracellular Matrices for Cell Culture. Biomacromolecules, 2020, 21, 566-580.	5.4	23
259	Surface Plasmonâ€Enhanced Shortâ€Wave Infrared Fluorescence for Detecting Subâ€Millimeterâ€Sized Tumors. Advanced Materials, 2021, 33, e2006057.	21.0	23
260	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
261	A plug-and-play ratiometric pH-sensing nanoprobe for high-throughput investigation of endosomal escape. Biomaterials, 2015, 51, 250-256.	11.4	21
262	MFSD7C switches mitochondrial ATP synthesis to thermogenesis in response to heme. Nature Communications, 2020, 11, 4837.	12.8	21
263	Electrostatic Conjugation of Nanoparticle Surfaces with Functional Peptide Motifs. Bioconjugate Chemistry, 2020, 31, 2211-2219.	3.6	21
264	Mechanomutable and reversibly swellable polyelectrolyte multilayer thin films controlled by electrochemically induced pH gradients. Soft Matter, 2011, 7, 6637.	2.7	20
265	Three-dimensional multilayered fibrous constructs for wound healing applications. Biomaterials Science, 2016, 4, 319-330.	5.4	20
266	Enhancing chemotherapy response through augmented synthetic lethality by co-targeting nucleotide excision repair and cell-cycle checkpoints. Nature Communications, 2020, 11, 4124.	12.8	20
267	Rapid viscoelastic switching of an ambient temperature range photo-responsive azobenzene side chain liquid crystal polymer. Polymer, 2013, 54, 2850-2856.	3.8	19
268	Catalytic, Conductive Bipolar Membrane Interfaces through Layerâ€byâ€Layer Deposition for the Design of Membraneâ€Integrated Artificial Photosynthesis Systems. ChemSusChem, 2017, 10, 4599-4609.	6.8	19
269	Peptide-Programmable Nanoparticle Superstructures with Tailored Electrocatalytic Activity. ACS Nano, 2018, 12, 6554-6562.	14.6	19
270	A review of treatments for non-compressible torso hemorrhage (NCTH) and internal bleeding. Biomaterials, 2022, 283, 121432.	11.4	19

#	Article	IF	Citations
271	Multilayer thin-film coatings capable of extended programmable drug release: application to human mesenchymal stem cell differentiation. Drug Delivery and Translational Research, 2012, 2, 375-383.	5.8	18
272	High Throughput Layer-by-Layer Films for Extracting Film Forming Parameters and Modulating Film Interactions with Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2255-2261.	8.0	18
273	Oxidationâ€Responsive, Tunable Growth Factor Delivery from Polyelectrolyteâ€Coated Implants. Advanced Healthcare Materials, 2021, 10, e2001941.	7.6	18
274	Ion Conduction and Water Transport in Polyphosphazene-Based Multilayers. Chemistry of Materials, 2010, 22, 226-232.	6.7	17
275	Development of multilayer polyelectrolyte thinâ€film membranes fabricated by spin assisted layerâ€byâ€layer assembly. Journal of Applied Polymer Science, 2012, 126, 1468-1474.	2.6	15
276	Role of silica nanoparticles in monitoring and prolonging release of drug-eluting polyelectrolyte coatings using long-period fiber grating platform. Sensors and Actuators B: Chemical, 2017, 252, 831-839.	7.8	15
277	Safe and Effective <i>In Vivo</i> Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Human Gene Therapy, 2021, 32, 31-42.	2.7	15
278	Mixed Surface Morphologies of Well-Defined Smectic Diblock Copolymer Ultrathin Films. Macromolecules, 2000, 33, 1108-1110.	4.8	14
279	Influence of Ammonium Salts on Discharge and Charge of Li–O ₂ Batteries. Journal of Physical Chemistry C, 2017, 121, 17671-17681.	3.1	14
280	Nano Tools Pave the Way to New Solutions in Infectious Disease. ACS Infectious Diseases, 2017, 3, 554-558.	3.8	14
281	Block copolymers of polystyrene and side-chain liquid crystalline siloxanes: morphology and thermal properties. Polymer, 2001, 42, 6945-6959.	3.8	13
282	Reverse osmosis desalination membrane formed from weak polyelectrolytes by spin assisted layer by layer technique. Desalination and Water Treatment, 2011, 34, 44-49.	1.0	13
283	A Flow Cytometric Clonogenic Assay Reveals the Single-Cell Potency of Doxorubicin. Journal of Pharmaceutical Sciences, 2015, 104, 4409-4416.	3.3	13
284	A design approach for layer-by-layer surface-mediated siRNA delivery. Acta Biomaterialia, 2021, 135, 331-341.	8.3	13
285	Multilayer Transfer Printing of Electroactive Thin Film Composites. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20519-20523.	8.0	12
286	RNAâ€Peptide nanoplexes drug DNA damage pathways in highâ€grade serous ovarian tumors. Bioengineering and Translational Medicine, 2018, 3, 26-36.	7.1	12
287	High resolution stereolithography fabrication of perfusable scaffolds to enable long-term meso-scale hepatic culture for disease modeling. Biofabrication, 2021, 13, 045024.	7.1	12
288	Peptideâ€Based Cancer Vaccine Delivery via the STINGΔTM GAMP Complex. Advanced Healthcare Materials, 2022, 11, .	7.6	12

#	Article	IF	Citations
289	Particles release. Nature Materials, 2010, 9, 292-293.	27.5	11
290	A modular polymer microbead angiogenesis scaffold to characterize the effects of adhesion ligand density on angiogenic sprouting. Biomaterials, 2021, 264, 120231.	11.4	11
291	Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Research, 2016, 44, 545-557.	14.5	10
292	Polyamineâ€Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angewandte Chemie, 2017, 129, 13897-13900.	2.0	10
293	Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. Jacs Au, 2022, 2, 12-21.	7.9	10
294	Morphology of side chain liquid crystalline block copolymer thin films and effects of thermal annealing. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3263-3266.	2.1	9
295	Electrochemical Performance of Thin-Film Functionalized Carbon Nanotube Electrodes in Nonaqueous Cells. Journal of the Electrochemical Society, 2014, 161, A1625-A1633.	2.9	9
296	Synthetic Lift-off Polymer beneath Layer-by-Layer Films for Surface-Mediated Drug Delivery. ACS Macro Letters, 2017, 6, 1320-1324.	4.8	9
297	Rational design of multistage drug delivery vehicles for pulmonary RNA interference therapy. International Journal of Pharmaceutics, 2020, 591, 119989.	5.2	9
298	Response to the comments on "Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries―by Po-Yen Chen, Jifa Qi, Matthew T. Klug, Xiangnan Dang, Paula T. Hammond, and Angela M. Belcher published in Energy Environ. Sci. in 2014. Energy and Environmental Science, 2015, 8, 1618-1625.	30.8	8
299	Layerâ€byâ€layer approaches to staging medicine from surfaces. AICHE Journal, 2015, 61, 1106-1117.	3.6	8
300	Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers. Optics Express, 2015, 23, 20132.	3.4	8
301	Mediated Growth of Zinc Chalcogen Shells on Gold Nanoparticles by Free-Base Amino Acids. Chemistry of Materials, 2017, 29, 6993-7001.	6.7	8
302	Modulating Nanoparticle Size to Understand Factors Affecting Hemostatic Efficacy and Maximize Survival in a Lethal Inferior Vena Cava Injury Model. ACS Nano, 2022, 16, 2494-2510.	14.6	8
303	Temporal dynamics of intradermal cytokine response to tuberculin in Mycobacterium bovis BCG-vaccinated cattle using sampling microneedles. Scientific Reports, 2021, 11, 7074.	3.3	7
304	Electrochromic Polyaniline Films from Layer-by-Layer Assembly. ACS Symposium Series, 2004, , 18-33.	0.5	5
305	Theranostic Layerâ€by‣ayer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angewandte Chemie, 2020, 132, 2798-2805.	2.0	5
306	Vancomycin Storage Stability in Multilayer Thin Film Coatings for On-Demand Care. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1895-1902.	3.5	4

#	Article	IF	Citations
307	Engineering Periodic shRNA for Enhanced Silencing Efficacy. Molecular Therapy, 2016, 24, 1070-1077.	8.2	4
308	A Multiâ€RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs. Angewandte Chemie, 2016, 128, 3408-3412.	2.0	4
309	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
310	Hydrolysis resistant functional polypeptide scaffold for biomaterials. Polymer Chemistry, 2018, 9, 346-351.	3.9	4
311	Lipidome-based Targeting of STAT3-driven Breast Cancer Cells Using Poly- <scp>I</scp> -glutamic Acid–coated Layer-by-Layer Nanoparticles. Molecular Cancer Therapeutics, 2021, 20, 726-738.	4.1	4
312	Two dimensional infrared (2D-IR) spectroscopic studies of the viscoelastic behavior of liquid crystalline polyurethanes. Macromolecular Symposia, 2002, 184, 183-192.	0.7	3
313	Surface-Directed Colloid Patterning: Selective Deposition via Electrostatic and Secondary Interactions. , 0, , 317-341.		3
314	Scalable Manufacture of Built-to-Order Nanomedicine: Spray-Assisted Layer-by-Layer Functionalization of PRINT Nanoparticles (Adv. Mater. 34/2013). Advanced Materials, 2013, 25, 4706-4706.	21.0	3
315	Antifouling Surface Coatings from Selfâ€Assembled Zwitterionic Aramid Amphiphile Nanoribbons. Advanced Materials Interfaces, 2022, 9, .	3.7	3
316	Nanoparticles made to order – inside and out. Membrane Technology, 2013, 2013, 8.	0.1	2
317	Polymer-on-Polymer Stamping on Micro- and Nano-Scales. Materials Research Society Symposia Proceedings, 2002, 736, 1.	0.1	1
318	Tissue Engineering: Osteophilic Multilayer Coatings for Accelerated Bone Tissue Growth (Adv. Mater.) Tj ETQq0 C	0.rgBT /C	verlock 10 Tf
319	In-situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers under static and dynamic conditions. Proceedings of SPIE, 2015, , .	0.8	1
320	Exploiting Nanocarriers for Combination Cancer Therapy. Fundamental Biomedical Technologies, 2016, , 375-402.	0.2	1
321	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
322	Rücktitelbild: Theranostic Layerâ€byâ€Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing (Angew. Chem. 7/2020). Angewandte Chemie, 2020, 132, 2936-2936.	2.0	1
323	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1
324	Side Chain Liquid Crystalline Block Copolymers With Chiral Smectic C* Mesogens. Materials Research Society Symposia Proceedings, 1996, 425, 67.	0.1	0

#	Article	IF	Citations
325	Weil-Defined Smectic C* Side Chain Liquid Crystalline Polymers. ACS Symposium Series, 1998, , 227-247.	0.5	0
326	The effect of ionic strength variation in the orientation characteristics of ionic polymer multilayers on patterned self-assembled monolayers using infrared reflection absorption spectroscopy. , 1998, , .		0
327	Order-Disorder and Order-Order Transitions in Smectic C* Liquid Crystalline Diblock Copolymers. ACS Symposium Series, 2001, , 239-251.	0.5	0
328	Selective Deposition of Two-Dimensional Colloidal Arrays on Patterned Polyelectrolyte Multilayer Templates. Materials Research Society Symposia Proceedings, 2001, 694, 1.	0.1	0
329	Dye Sensitized Solar Cells Incorporating Polyelectrolyte Multilayer Composites. Materials Research Society Symposia Proceedings, 2004, 836, L1.5.1.	0.1	0
330	Side Chain Liquid Crystalline Thermoplastic Elastomers for Actuator and Electromechanical Applications. Materials Research Society Symposia Proceedings, 2005, 889, 1.	0.1	0
331	New material for fuel cells increases power output by more than 50%. Membrane Technology, 2008, 2008, 8-9.	0.1	O
332	Patterning nano-domains with orthogonal functionalities: Solventless synthesis of self-sorting surfaces. , 2009, , .		0
333	Drug Delivery: Composite Dissolving Microneedles for Coordinated Control of Antigen and Adjuvant Delivery Kinetics in Transcutaneous Vaccination (Adv. Funct. Mater. 2/2013). Advanced Functional Materials, 2013, 23, 138-138.	14.9	O
334	Nanoporous Networks: Assembly of a Bacteriophage-Based Template for the Organization of Materials into Nanoporous Networks (Adv. Mater. 21/2014). Advanced Materials, 2014, 26, 3568-3568.	21.0	0
335	Nanostructures: Highly Scalable, Closed-Loop Synthesis of Drug-Loaded, Layer-by-Layer Nanoparticles (Adv. Funct. Mater. 7/2016). Advanced Functional Materials, 2016, 26, 990-990.	14.9	0
336	Innenrücktitelbild: A Multiâ€RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs (Angew. Chem. 10/2016). Angewandte Chemie, 2016, 128, 3575-3575.	2.0	0
337	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	0
338	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	14.6	0
339	In vitro STING Activation with the cGAMP-STINGI"TM Signaling Complex. Bio-protocol, 2021, 11, e3905.	0.4	0
340	TMOD-11. A PREDICTIVE MICROFLUIDIC MODEL OF VASCULARIZED GLIOMA TUMORS TO ASSESS TRAFFICKING OF THERAPEUTICS ACROSS THE BLOOD-BRAIN BARRIER. Neuro-Oncology, 2021, 23, vi217-vi218.	1.2	0
341	EXTH-26. LAYER-BY-LAYER NANOPARTICLES DESIGNED FOR DUAL BLOOD-BRAIN BARRIER AND GLIOMA TARGETING. Neuro-Oncology, 2021, 23, vi168-vi169.	1.2	0
342	Promoting an Inclusive Lab Culture through Custom In-Person Trainings within an Engineering Department. , 0, , .		0