Joanna Pisarska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7101325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of glass formers and glass modifiers on spectral properties and CIE coordinates of Dy3+ ions in lead-free borate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120693.	3.9	7
2	Spectroscopic Properties of Inorganic Glasses Doped with Pr3+: A Comparative Study. Materials, 2022, 15, 767.	2.9	4
3	EPR and optical spectroscopy of Cr3+ ions in barium gallo-germanate glasses containing B2O3/TiO2. Journal of Luminescence, 2022, 245, 118775.	3.1	4
4	White light emission and energy transfer in Pr3+/Er3+ co-doped InF3-based glass. Materials Research Bulletin, 2022, 150, 111791.	5.2	7
5	Investigation of the TeO2/GeO2 Ratio on the Spectroscopic Properties of Eu3+-Doped Oxide Glasses for Optical Fiber Application. Materials, 2022, 15, 117.	2.9	8
6	Ultra-broadband emission in Er ³⁺ /Tm ³⁺ /Ho ³⁺ triply-doped germanate glass and double-clad optical fiber. Optical Materials Express, 2022, 12, 2332.	3.0	5
7	Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions. Materials, 2022, 15, 3797.	2.9	2
8	Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+. Materials, 2022, 15, 3660.	2.9	10
9	Nd ³⁺ doped titanate-germanate glasses for near-IR laser applications. Optical Materials Express, 2022, 12, 2912.	3.0	9
10	Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals. Materials, 2021, 14, 754.	2.9	11
11	Fluoroindate Glass Co-Doped with Yb3+/Ho3+ as a 2.85 μm Luminescent Source for MID-IR Sensing. Sensors, 2021, 21, 2155.	3.8	14
12	Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+. Materials, 2021, 14, 2901.	2.9	7
13	Structure and Luminescence Properties of Transparent Germanate Glass-Ceramics Co-Doped with Ni2+/Er3+ for Near-Infrared Optical Fiber Application. Nanomaterials, 2021, 11, 2115.	4.1	6
14	Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses. Materials, 2021, 14, 121.	2.9	9
15	Transition Metals (Cr3+) and Lanthanides (Eu3+) in Inorganic Glasses with Extremely Different Glass-Formers B2O3 and GeO2. Materials, 2021, 14, 7156.	2.9	5
16	Lead Borate Glasses and Glass-Ceramics Singly Doped with Dy3+ for White LEDs. Materials, 2020, 13, 5022.	2.9	14
17	Influence of Oxide Glass Modifiers on the Structural and Spectroscopic Properties of Phosphate Glasses for Visible and Near-Infrared Photonic Applications. Materials, 2020, 13, 4746.	2.9	31
18	Novel Multicomponent Titanate-Germanate Glasses: Synthesis, Structure, Properties, Transition Metal, and Rare Earth Doping. Materials, 2020, 13, 4422.	2.9	12

#	Article	IF	CITATIONS
19	Fluoroindate glasses co-doped with Pr3+/Er3+ for near-infrared luminescence applications. Scientific Reports, 2020, 10, 21105.	3.3	15
20	Theoretical calculations and experimental investigations of lead phosphate glasses singly doped with Pr3+ and Tm3+ ions using luminescence spectroscopy. Journal of Alloys and Compounds, 2020, 842, 155801.	5.5	12
21	Luminescent Studies on Germanate Glasses Doped with Europium Ions for Photonic Applications. Materials, 2020, 13, 2817.	2.9	15
22	Structure, luminescence and energy transfer of fluoroindate glasses co-doped with Er3+/Ho3+. Ceramics International, 2020, 46, 26403-26409.	4.8	20
23	Sensitization of Ho3+ - doped fluoroindate glasses for near and mid-infrared emission. Optical Materials, 2020, 101, 109707.	3.6	10
24	White light emission through energy transfer processes in barium gallo-germanate glasses co-doped with Dy3+-Ln3+ (Ln =Ce, Tm). Optical Materials, 2019, 87, 63-69.	3.6	17
25	Holmium doped barium gallo-germanate glasses for near-infrared luminescence at 2000â€ [–] nm. Journal of Luminescence, 2019, 215, 116625.	3.1	11
26	Lead-based glasses doped with Dy3+ ions for W-LEDs. Materials Letters, 2019, 254, 62-64.	2.6	11
27	Spectroscopic Properties of Erbium-Doped Oxyfluoride Phospho-Tellurite Glass and Transparent Glass-Ceramic Containing BaF2 Nanocrystals. Materials, 2019, 12, 3429.	2.9	21
28	Spectroscopic properties of antimony modified germanate glass doped with Eu3+ ions. Ceramics International, 2019, 45, 24811-24817.	4.8	20
29	Effect of acceptor ions concentration in lead phosphate glasses co-doped with Tb3+–Ln3+ (LnÂ=ÂEu, Sm) for LED applications. Journal of Rare Earths, 2019, 37, 1145-1151.	4.8	18
30	Influence of transition metal ion concentration on near-infrared emission of Ho3+ in barium gallo-germanate glasses. Journal of Alloys and Compounds, 2019, 793, 107-114.	5.5	11
31	Influence of the rare earth ions concentration on luminescence properties of barium gallo-germanate glasses for white lighting. Journal of Luminescence, 2019, 211, 375-381.	3.1	16
32	2†μm emission in gallo-germanate glasses and glass fibers co-doped with Yb3+/Ho3+ and Yb3+/Tm3+/Ho3+. Journal of Luminescence, 2019, 211, 341-346.	3.1	25
33	Reddish-Orange Luminescence from BaF2:Eu3+ Fluoride Nanocrystals Dispersed in Sol-Gel Materials. Materials, 2019, 12, 3735.	2.9	11
34	Tm ³⁺ /Ho ³⁺ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm. Optical Materials Express, 2019, 9, 1450.	3.0	46
35	Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er ³⁺ /Tm ³⁺ . Optical Materials Express, 2019, 9, 4772.	3.0	20
36	Structural and spectroscopic properties of lead phosphate glasses doubly doped with Tb 3+ and Eu 3+ ions. Journal of Molecular Structure, 2018, 1163, 418-427.	3.6	27

#	Article	IF	CITATIONS
37	Crystallization of lead-based and lead-free oxyfluoride germanate glasses doped with erbium during heat treatment process. Journal of Non-Crystalline Solids, 2018, 501, 121-125.	3.1	8
38	Green up-conversion luminescence of erbium-doped oxyfluoride germanate fiber under continuous-wave laser-diode excitation. Materials Letters, 2018, 216, 131-134.	2.6	2
39	Investigation of the aluminum oxide content on structural and optical properties of germanium glasses doped with RE ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 143-152.	3.9	10
40	Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 1-7.	3.9	12
41	Influence of acceptor concentration on crystallization behavior and luminescence properties of lead borate glasses co-doped with Dy3+ and Tb3+ ions. Journal of Alloys and Compounds, 2018, 749, 561-566.	5.5	11
42	Electrical and optical properties of glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2018, 498, 352-363.	3.1	32
43	Influence of excitation wavelengths on up-converted luminescence sensing behavior of Er3+ ions in lead-free germanate glass. Journal of Luminescence, 2018, 193, 34-38.	3.1	10
44	Spectroscopy and energy transfer in lead borate glasses doubly doped with Tm3+ and Dy3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 140-145.	3.9	12
45	Spectroscopy and energy transfer in Tb 3+ /Sm 3+ co-doped lead borate glasses. Journal of Luminescence, 2018, 195, 87-95.	3.1	37
46	1.5 – 2.1 μm Broadband ASE in Rare-Earth Co-Doped Glasses and Double-Clad Optical Fibers. , 2018, , .		1
47	Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 362-366.	3.9	16
48	Lead borate glasses triply doped with Dy3+/Tb3+/Eu3+ ions for white emission. Optical Materials, 2018, 82, 110-115.	3.6	21
49	Energy transfer and multicolor emission in germanate glasses containing Ce3+ and Pr3+ for white light-emitting diodes. , 2018, , .		Ο
50	Spectroscopic properties of rare earth doped germanate glasses. , 2018, , .		0
51	Near-infrared emission in barium gallo-germanate glasses doped with Pr3+ and co-doped with Ce3+ and Pr3+ for broadband optical amplifiers. , 2018, , .		Ο
52	Pr ³⁺ /Yb ³⁺ : <scp>PLZT</scp> ferroelectric ceramics for nearâ€infrared radiation at 1340 nm. Journal of the American Ceramic Society, 2017, 100, 1295-1299.	3.8	6
53	Green and red up-conversion luminescence of Er ³⁺ in lead silicate glass under excitation of Yb ³⁺ . Proceedings of SPIE, 2017, , .	0.8	0
54	Up-conversion luminescence of Er 3+ ions in lead-free germanate glasses under 800Ânm and 980Ânm cw diode laser excitation. Optical Materials, 2017, 74, 105-108.	3.6	14

#	Article	IF	CITATIONS
55	Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+. Journal of Alloys and Compounds, 2017, 727, 1221-1226.	5.5	47
56	Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications. Opto-electronics Review, 2017, 25, 238-241.	2.4	11
57	Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing. Sensors and Actuators B: Chemical, 2017, 253, 85-91.	7.8	27
58	Photoluminescence of antimony-germanate-silicate glass doped with europium ions and silver nanoparticles. , 2017, , .		1
59	Er^3+/Yb^3+ co-doped lead silicate glasses and their optical temperature sensing ability. Optics Express, 2017, 25, 28501.	3.4	11
60	Optical Characterization of Nano- and Microcrystals of EuPO4 Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P2O5. Materials, 2017, 10, 1059.	2.9	9
61	Replacement of glass-former B2O3 by GeO2 in amorphous host evidenced by optical methods. Photonics Letters of Poland, 2017, 9, 113.	0.4	0
62	Effect of BaF ₂ Content on Luminescence of Rareâ€Earth lons in Borate and Germanate Glasses. Journal of the American Ceramic Society, 2016, 99, 2009-2016.	3.8	18
63	Influence of MO/MF2 modifiers (MÂ=ÂCa, Sr, Ba) on spectroscopic properties of Eu3+ ions in germanate and borate glasses. Optical Materials, 2016, 61, 59-63.	3.6	20
64	Energy transfer processes between rare earth ions and white light emission in inorganic glasses. , 2016, , .		3
65	Analysis of quantum cutting in aluminosilicate glass co-doped with Yb3+/Eu3+ions. , 2016, , .		Ο
66	Luminescence Properties of Ytterbium Activated PLZT Ceramics. Advances in Science and Technology, 2016, 98, 64-69.	0.2	2
67	Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors. Sensors and Actuators A: Physical, 2016, 252, 54-58.	4.1	46
68	PbWO <inf>4</inf> micro-/nanocrystals in transparent glass-ceramics: Synthesis, structure-property relationship and lanthanide doping. , 2016, , .		0
69	Rare earth-doped barium gallo-germanate glasses for broadband near-infrared luminescence. , 2016, , .		1
70	Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (MÂ=ÂCa, Sr,) Tj ETQo	10 0 0 rgB	T/Qyerlock 10

71	Spectral analysis of Pr3+ doped germanate glasses modified by BaO and BaF2. Journal of Luminescence, 2016, 171, 138-142.	3.1	23
72	Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X=Ge, Si) glasses. Optical Materials, 2016, 59, 87-90.	3.6	38

#	Article	IF	CITATIONS
73	Influence of BaF_2 and activator concentration on broadband near-infrared luminescence of Pr^3+ ions in gallo-germanate glasses. Optics Express, 2016, 24, 2427.	3.4	44
74	Effect of GeO2 content on structural and spectroscopic properties of antimony glasses doped with Sm3+ ions. Journal of Molecular Structure, 2016, 1126, 207-212.	3.6	30
75	Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb /Tm3+ and Yb3+/Ho3+ ions. Journal of Luminescence, 2016, 170, 795-800.	3.1	43
76	Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M = Ca, Sr, Ba). Journal of Non-Crystalline Solids, 2016, 431, 145-149.	3.1	22
77	Upconversion emission in antimony–germanate double-clad optical fiber co-doped with Yb3+/Tm3+ ions. Optical Materials, 2015, 41, 108-111.	3.6	14
78	Novel iridium(III) complexes based on 2-(2,2'-bithien-5-yl)-quinoline. Synthesis, photophysical, photochemical and DFT studies. Materials Chemistry and Physics, 2015, 162, 498-508.	4.0	12
79	Enhancement and quenching photoluminescence effects for rare earth – Doped lead bismuth gallate glasses. Journal of Alloys and Compounds, 2015, 651, 565-570.	5.5	18
80	NIR to visible upconversion in double – clad optical fiber co-doped with Yb^3+/Ho^3+. Optical Materials Express, 2015, 5, 1505.	3.0	17
81	Spectroscopic properties of Pr3+ and Er3+ ions in lead-free borate glasses modified by BaF2. Optical Materials, 2015, 47, 548-554.	3.6	9
82	Compositional-dependent europium-doped lead phosphate glasses and their spectroscopic properties. Optical Materials, 2015, 40, 91-96.	3.6	39
83	Thermal analysis and near-infrared luminescence of Er3+-doped lead phosphate glasses modified by PbF2. Journal of Luminescence, 2015, 160, 57-63.	3.1	17
84	Selective oxide modifiers M2O3 (M=Al, Ga) as crystallizing agents in Er3+-doped lead phosphate glass host. Ceramics International, 2015, 41, 4334-4339.	4.8	10
85	Rare earths in lead-free oxyfluoride germanate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 587-591.	3.9	16
86	Up-conversion luminescence of Tb^3+ ions in germanate glasses under diode-laser excitation of Yb^3+. Optical Materials Express, 2014, 4, 1050.	3.0	25
87	Optical properties of lead-free oxyfluoride germanate glasses doped with Pr3+. , 2014, , .		Ο
88	Influence of M2O3 (M = Al, Ga) glass modifiers on structure, thermal and spectroscopic properties of rare earth ions in lead phosphate based systems. , 2014, , .		0
89	Energy transfer processes from Yb3+ to Ln3+ (Ln=Er or Tm) in heavy metal glasses. Journal of Rare Earths, 2014, 32, 273-276.	4.8	7
90	Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy3+–Tb3+ and Tb3+–Eu3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 649-653.	3.9	15

#	Article	IF	CITATIONS
91	Energy transfer from Tb3+ to Eu3+ in lead borate glass. Journal of Non-Crystalline Solids, 2014, 388, 1-5.	3.1	38
92	Excitation and luminescence of Dy3+ ions in PbO-P2O5-Ga2O3 glass system. Journal of Rare Earths, 2014, 32, 213-216.	4.8	26
93	Structure and spectroscopy of rare earth – Doped lead phosphate glasses. Journal of Alloys and Compounds, 2014, 587, 90-98.	5.5	78
94	Towards lead-free oxyfluoride germanate glasses singly doped with Er 3+ for long-lived near-infrared luminescence. Materials Chemistry and Physics, 2014, 148, 485-489.	4.0	23
95	Excitation and luminescence of rare earth-doped lead phosphate glasses. Applied Physics B: Lasers and Optics, 2014, 116, 837-845.	2.2	32
96	Energy transfer from Dy3+ to Tb3+ in lead borate glass. Materials Letters, 2014, 129, 146-148.	2.6	39
97	Influence of PbF2 concentration on thermal, structural and spectroscopic properties of Eu3+-doped lead phosphate glasses. Journal of Molecular Structure, 2014, 1075, 605-608.	3.6	21
98	Rare earth doped lead-free germanate glasses for modern photonics. Photonics Letters of Poland, 2014, 6, .	0.4	0
99	Enhanced and Longâ€Lived Nearâ€Infrared Luminescence of <scp><scp>Er</scp></scp> 3+ Ions in Lead Borate Glassâ€Ceramics Containing PbWO ₄ Nanocrystals. Journal of the American Ceramic Society, 2013, 96, 1685-1687.	3.8	3
100	Absorption and luminescence properties of terbium ions in heavy metal glasses. Journal of Alloys and Compounds, 2013, 578, 512-516.	5.5	39
101	Influence of PbF2 concentration on spectroscopic properties of Eu3+ and Dy3+ ions in lead borate glasses. Journal of Non-Crystalline Solids, 2013, 377, 114-118.	3.1	17
102	Structural and optical aspects for Eu3+ and Dy3+ ions in heavy metal glasses based on PbO–Ga2O3–XO2 (X=Te, Ge, Si). Optical Materials, 2013, 35, 1051-1056.	3.6	32
103	PbWO4 formation during controlled crystallization of lead borate glasses. Ceramics International, 2013, 39, 9151-9156.	4.8	8
104	Terbium-terbium interactions in lead phosphate glasses. Journal of Applied Physics, 2013, 113, 143504.	2.5	22
105	Structural and optical characterization of Dyâ€doped heavyâ€metal oxide and oxyhalide borate glasses. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1134-1140.	1.8	22
106	Luminescence quenching of Dy3+ ions in lead bismuthate glasses. Chemical Physics Letters, 2012, 531, 114-118.	2.6	17
107	Optical transitions of Eu^3+ and Dy^3+ ions in lead phosphate glasses. Optics Letters, 2011, 36, 990.	3.3	36
108	Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses. Journal of Alloys and Compounds, 2011, 509, 8088-8092.	5.5	45

7

#	Article	IF	CITATIONS
109	Glass preparation and temperature-induced crystallization in multicomponent B2O3–PbX2–PbO–Al2O3–WO3–Dy2O3 (X = F, Cl, Br) system. Journal of Non-Crystalline Solids, 2011, 1228-1231.	357,	15
110	Near-infrared luminescence and up-conversion processes of lanthanide ions in heavy metal glasses. Proceedings of SPIE, 2011, , .	0.8	1
111	Transparent glass-ceramics containing Eu3+and Dy3+ions for visible optoelectronics. , 2011, , .		0
112	Excitation energy transfer and optical transitions in heavy metal glasses doubly doped with Yb ³⁺ and Er ³⁺ . Proceedings of SPIE, 2011, , .	0.8	1
113	Local structure and luminescent properties of lead phosphate glasses containing rare earth ions. Journal of Rare Earths, 2011, 29, 1157-1160.	4.8	21
114	Up-conversion processes of rare earth ions in heavy metal glasses. Journal of Rare Earths, 2011, 29, 1192-1194.	4.8	7
115	Terbium-doped heavy metal glasses for green luminescence. Journal of Rare Earths, 2011, 29, 1198-1200.	4.8	24
116	Optical spectroscopy of Dy3+ ions in heavy metal lead-based glasses and glass–ceramics. Journal of Molecular Structure, 2011, 993, 160-166.	3.6	39
117	Luminescence spectroscopy of rare earth-doped oxychloride lead borate glasses. Journal of Luminescence, 2011, 131, 649-652.	3.1	13
118	Visible luminescence of dysprosium ions in oxyhalide lead borate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 705-707.	3.9	27
119	Rare earth-doped lead phosphate glasses for visible luminescence. , 2011, , .		0
120	Laser spectroscopy of rare earth ions in lead borate glasses and transparent glass-ceramics. Laser Physics, 2010, 20, 649-655.	1.2	16
121	Laser spectroscopy of Nd3+ and Dy3+ ions in lead borate glasses. Optics and Laser Technology, 2010, 42, 805-809.	4.6	95
122	Unusual luminescence behavior of Dy3+-doped lead borate glass after heat treatment. Chemical Physics Letters, 2010, 489, 198-201.	2.6	41
123	Infrared-to-visible conversion luminescence of Er3+ ions in lead borate transparent glass-ceramics. Optical Materials, 2009, 31, 1781-1783.	3.6	5
124	Luminescence behavior of Dy3+ ions in lead borate glasses. Optical Materials, 2009, 31, 1784-1786.	3.6	63
125	Erbium-doped oxide and oxyhalide lead borate glasses for near-infrared broadband optical amplifiers. Chemical Physics Letters, 2009, 472, 217-219.	2.6	44
126	Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses. Journal of Alloys and Compounds, 2009, 484, 45-49.	5.5	56

#	Article	IF	CITATIONS
127	Optical properties of lead borate glasses containing Dy ³⁺ ions. Journal of Physics Condensed Matter, 2009, 21, 285101.	1.8	111
128	Novel oxychloroborate glasses containing neodymium ions: Synthesis, structure and luminescent properties. Journal of Molecular Structure, 2008, 887, 201-204.	3.6	7
129	Effect of heat treatment on Er3+ containing multicomponent oxyfluoride lead borate glass system. Journal of Non-Crystalline Solids, 2008, 354, 492-496.	3.1	12
130	Nd-doped oxyfluoroborate glasses and glass-ceramics for NIR laser applications. Journal of Alloys and Compounds, 2008, 451, 223-225.	5.5	35
131	Up-converted luminescence in Yb–Tm co-doped lead fluoroborate glasses. Journal of Alloys and Compounds, 2008, 451, 226-228.	5.5	42
132	Role of PbO substitution by PbF2 on structural behavior and luminescence of rare earth-doped lead borate glass. Journal of Alloys and Compounds, 2008, 451, 220-222.	5.5	36
133	Temperature-Controlled Devitrification of Oxyfluoride Borate Glasses. Solid State Phenomena, 2007, 130, 263-266.	0.3	4
134	Er-Doped Lead Borate Glasses and Transparent Glass Ceramics for Near-Infrared Luminescence and Up-Conversion Applications. Journal of Physical Chemistry B, 2007, 111, 2427-2430.	2.6	66
135	Influence of P2O5 concentration on structural, thermal and optical behavior of Pr-activated fluoroindate glass. Physica B: Condensed Matter, 2007, 388, 331-336.	2.7	18
136	<title>Luminescence of thulium and praseodymium in the fluorindate glass ceramics</title> ., 2006, , .		0
137	<title>Selected glasses and glass-ceramics for NIR luminescence</title> ., 2006, , .		Ο
138	Compositional-dependent lead borate based glasses doped with Eu3+ ions: Synthesis and spectroscopic properties. Journal of Physics and Chemistry of Solids, 2006, 67, 2452-2457.	4.0	55
139	<title>Pr-doped lead fluoroborate glasses</title> . , 2006, 6347, 362.		0
140	Structural role of rare earth ions in lead borate glasses evidenced by infrared spectroscopy: BO3↔BO4 conversion. Journal of Molecular Structure, 2005, 744-747, 515-520.	3.6	52
141	Structure and properties of rare earth-doped lead borate glasses. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 94-99.	3.5	120
142	Glass-ceramics nanostructures on the base of rare-earth ions doped fluoroindates. , 2005, 5775, 238.		0
143	Influence of thermal treatment on spectroscopic properties of Er3+ ions in multicomponent InF3-based glasses. Journal of Alloys and Compounds, 2005, 398, 272-275.	5.5	9
144	Visible and infrared spectroscopy of Pr3+and Tm3+ions in lead borate glasses. Journal of Physics Condensed Matter, 2004, 16, 6171-6184.	1.8	56

#	Article	IF	CITATIONS
145	IR transmission and emission spectra of erbium ions in fluoroindate glass. Journal of Non-Crystalline Solids, 2004, 345-346, 382-385.	3.1	18
146	Effect of erbium concentration on physical properties of fluoroindate glass. Chemical Physics Letters, 2003, 380, 604-608.	2.6	40
147	<title>Judd-Ofelt analysis and emission properties of Eu<formula>^{<roman>3+</roman>}</formula> ions in fluorindate glasses</title> . , 2003, 5028, 225.		1
148	<pre><title>Some properties of InF<formula><inf><roman>3</roman></inf></formula>-based fluoride glasses doped with Tm<formula>^{<roman>3+</roman>}</formula><formula> and Tm<formula>^{<roman>3+</roman>}</formula>^{<roman>3+</roman>}</formula>^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}^{<roman>3+</roman>}</title></pre>	mulas	0

Tm<formula>^{<roman>3+</roman>}</formula>-Tb<formula>^{<roman>3+</roman>}</formula> ions</title>., 2003, 5028, 181.