List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100100/publications.pdf Version: 2024-02-01

VEONG-SU KIM

#	Article	IF	CITATIONS
1	Characterization of an Agrobacterium tumefaciens d -Psicose 3-Epimerase That Converts d -Fructose to d -Psicose. Applied and Environmental Microbiology, 2006, 72, 981-985.	3.1	168
2	Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme and Microbial Technology, 2006, 39, 903-908.	3.2	107
3	Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresource Technology, 2012, 104, 668-672.	9.6	85
4	Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. Journal of Biotechnology, 2012, 158, 17-23.	3.8	80
5	Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2011, 90, 489-497.	3.6	68
6	Hydrolysis of Isoflavone Glycosides by a Thermostable β-Glucosidase from Pyrococcus furiosus. Journal of Agricultural and Food Chemistry, 2012, 60, 1535-1541.	5.2	63
7	Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Journal of Bioscience and Bioengineering, 2009, 108, 36-40.	2.2	57
8	Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus. Biochimie, 2012, 94, 907-915.	2.6	50
9	Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Applied Microbiology and Biotechnology, 2012, 95, 929-937.	3.6	50
10	Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. Biotechnology Letters, 2012, 34, 2061-2068.	2.2	47
11	Borate enhances the production of lactulose from lactose by cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresource Technology, 2013, 128, 809-812.	9.6	42
12	Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnology Letters, 2012, 34, 125-129.	2.2	41
13	Characterization of a GH3 Family Î ² -Glucosidase from Dictyoglomus turgidum and Its Application to the Hydrolysis of Isoflavone Glycosides in Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 2011, 59, 11812-11818.	5.2	37
14	Substrate specificity of a recombinant chicken β-carotene 15,15′-monooxygenase that converts β-carotene into retinal. Biotechnology Letters, 2009, 31, 403-408.	2.2	36
15	In Vitro Characterization of a Recombinant Blh Protein from an Uncultured Marine Bacterium as a β-Carotene 15,15′-Dioxygenase. Journal of Biological Chemistry, 2009, 284, 15781-15793.	3.4	35
16	Characterization of a recombinant thermostable l-rhamnose isomerase from Thermotoga maritima ATCC 43589 and its application in the production of l-lyxose and l-mannose. Biotechnology Letters, 2010, 32, 1947-1953.	2.2	32
17	Characterization of a recombinant mannobiose 2-epimerase from Spirochaeta thermophila that is suggested to be a cellobiose 2-epimerase. Biotechnology Letters, 2013, 35, 1873-1880.	2.2	29
18	Increased d-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Applied Microbiology and Biotechnology, 2011, 89, 1859-1866.	3.6	24

#	Article	IF	CITATIONS
19	Characterization of a recombinant l-rhamnose isomerase from Dictyoglomus turgidum and its application for l-rhamnulose production. Biotechnology Letters, 2013, 35, 259-264.	2.2	23
20	Substrate specificity of a recombinant d-lyxose isomerase from Serratia proteamaculans that produces d-lyxose and d-mannose. Letters in Applied Microbiology, 2010, 51, 343-350.	2.2	21
21	Retinal production from β-carotene by β-carotene 15,15′-dioxygenase from an unculturable marine bacterium. Biotechnology Letters, 2010, 32, 957-961.	2.2	20
22	Characterization of a Mannose-6-Phosphate Isomerase from <i>Thermus thermophilus</i> and Increased <scp>l</scp> -Ribose Production by Its R142N Mutant. Applied and Environmental Microbiology, 2011, 77, 762-767.	3.1	20
23	β-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides. Applied Microbiology and Biotechnology, 2013, 97, 6315-6324.	3.6	20
24	Optimized Formation of Detergent Micelles of β-Carotene and Retinal Production Using Recombinant Human β,β-Carotene 15,15'-Monooxygenase. Biotechnology Progress, 2008, 24, 227-231.	2.6	18
25	Biotransformation of carotenoids to retinal by carotenoid 15,15′-oxygenase. Applied Microbiology and Biotechnology, 2010, 88, 807-816.	3.6	18
26	Characterization of a recombinant thermostable d-lyxose isomerase from Dictyoglomus turgidum that produces d-lyxose from d-xylulose. Biotechnology Letters, 2012, 34, 1079-1085.	2.2	17
27	Effective production of retinal from β-carotene using recombinant mouse β-carotene 15,15′-monooxygenase. Applied Microbiology and Biotechnology, 2007, 76, 1339-1345.	3.6	16
28	Differential Selectivity of the <i>Escherichia coli</i> Cell Membrane Shifts the Equilibrium for the Enzyme-Catalyzed Isomerization of Galactose to Tagatose. Applied and Environmental Microbiology, 2008, 74, 2307-2313.	3.1	16
29	Ginsenoside F1 production from ginsenoside Rg1 by a purified β-glucosidase from Fusarium moniliforme var. subglutinans. Biotechnology Letters, 2011, 33, 2457-2461.	2.2	15
30	Characterization of a recombinant endo-1,5-α-l-arabinanase from the isolated bacterium Bacillus licheniformis. Biotechnology and Bioprocess Engineering, 2010, 15, 590-594.	2.6	14
31	Molecular characterization of a thermostable l-fucose isomerase from Dictyoglomus turgidum that isomerizes l-fucose and d-arabinose. Biochimie, 2012, 94, 1926-1934.	2.6	14
32	Development of Novel Sugar Isomerases by Optimization of Active Sites in Phosphosugar Isomerases for Monosaccharides. Applied and Environmental Microbiology, 2013, 79, 982-988.	3.1	14
33	Conversion of Glycosylated Platycoside E to Deapiose-Xylosylated Platycodin D by Cytolase PCL5. International Journal of Molecular Sciences, 2020, 21, 1207.	4.1	14
34	Utilization of the recombinant human β-carotene-15,15′-monooxygenase gene in Escherichia coli and mammalian cells. Biotechnology Letters, 2008, 30, 735-741.	2.2	13
35	Production of β-apo-10′-carotenal from β-carotene by human β-carotene-9′,10′-oxygenase expressed in Biotechnology Letters, 2011, 33, 1195-1200.	E, coli. 2.2	13
36	Enhancement of retinal production by supplementing the surfactant Span 80 using metabolically engineered Escherichia coli. Journal of Bioscience and Bioengineering, 2012, 113, 461-466.	2.2	13

#	Article	IF	CITATIONS
37	Effect of high hydrostatic pressure treatment on isoquercetin production from rutin by commercial α-l-rhamnosidase. Biotechnology Letters, 2016, 38, 1775-1780.	2.2	12
38	Roles of Ile66 and Ala107 of d-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, d-fructose. Biotechnology Letters, 2010, 32, 113-118.	2.2	11
39	Characterization of β-Glycosidase from Caldicellulosiruptor owensensis and Its Application in the Production of Platycodin D from Balloon Flower Leaf. Catalysts, 2019, 9, 1025.	3.5	11
40	Hydrophobicity of residue 108 specifically affects the affinity of human β-carotene 15,15′-monooxygenase for substrates with two ionone rings. Biotechnology Letters, 2010, 32, 847-853.	2.2	10
41	Substrate specificity of a recombinant ribose-5-phosphate isomerase from Streptococcus pneumoniae and its application in the production of l-lyxose and l-tagatose. World Journal of Microbiology and Biotechnology, 2011, 27, 743-750.	3.6	10
42	Production of D-Allose From D-Allulose Using Commercial Immobilized Glucose Isomerase. Frontiers in Bioengineering and Biotechnology, 2021, 9, 681253.	4.1	10
43	Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. Plants, 2022, 11, 1243.	3.5	10
44	Molecular characterization of a novel thermostable mannose-6-phosphate isomerase from Thermus thermophilus. Biochimie, 2011, 93, 1659-1667.	2.6	9
45	Reduction of galactose inhibition via the mutation of β-galactosidase from Caldicellulosiruptor saccharolyticus for lactose hydrolysis. Biotechnology Letters, 2011, 33, 353-358.	2.2	9
46	Characterization of a glycoside hydrolase family 42 β-galactosidase from Deinococcus geothermalis. Biotechnology Letters, 2011, 33, 577-583.	2.2	9
47	l-Arabinose production from sugar beet arabinan by immobilized endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus in a packed-bed reactor. Journal of Bioscience and Bioengineering, 2012, 113, 239-241.	2.2	7
48	Phosphate sugar isomerases and their potential for rare sugar bioconversion. Journal of Microbiology, 2020, 58, 725-733.	2.8	7
49	Cloning and characterization of α-l-rhamnosidase from Chloroflexus aurantiacus and its application in the production of isoquercitrin from rutin. Biotechnology Letters, 2019, 41, 419-426.	2.2	6
50	Characterization of an apo-carotenoid 13,14-dioxygenase from Novosphingobium aromaticivorans that converts β-apo-8′-carotenal to β-apo-13-carotenone. Biotechnology Letters, 2012, 34, 1851-1856.	2.2	5
51	Hydrolysis of the outer β -(1,2)- <scp>d</scp> -glucose linkage at the C-3 position of ginsenosides by a commercial β -galactosidase and its use in the production of minor ginsenosides. Biocatalysis and Biotransformation, 2019, 37, 53-58.	2.0	5
52	Production of <scp>l</scp> -rhamnulose, a rare sugar, from <scp>l</scp> -rhamnose using commercial immobilized glucose isomerase. Biocatalysis and Biotransformation, 2018, 36, 417-421.	2.0	4
53	Bakkenolides and Caffeoylquinic Acids from the Aerial Portion of Petasites japonicus and Their Bacterial Neuraminidase Inhibition Ability. Biomolecules, 2020, 10, 888.	4.0	4
54	Improved Production of Deglucosylated Platycodin D from Saponins from Balloon Flower Leaf by a Food-Grade Enzyme Using High Hydrostatic Pressure. Heliyon, 2021, 7, e08104.	3.2	4

#	Article	IF	CITATIONS
55	Quantitative Determination of Marker Compounds in the Extracts of Camellia sinensis L. Sub-branches (Residual Products) by HPLC. Korean Journal of Medicinal Crop Science, 2019, 27, 24-29.	0.4	4
56	Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose. Applied Sciences (Switzerland), 2022, 12, 4696.	2.5	3
57	Discovery and Characterization of Chemical Compounds That Inhibit the Function of Bacterial Neuraminidase from Codonopsis ussuriensis. Applied Sciences (Switzerland), 2022, 12, 6254.	2.5	3
58	Improved Biotransformation of Platycoside E into Deapiose-Xylosylated Platycodin D by Cytolase PCL5 under High Hydrostatic Pressure. Applied Sciences (Switzerland), 2021, 11, 10623.	2.5	1
59	Production of Daidzein and Genistein from Seed and Root Extracts of Korean Wild Soybean (Glycine) Tj ETQq1 1 2022, 12, 3481.	0.784314 2.5	rgBT /Overlo 1
60	d-Allulose Production from d-fructose by Putative Dolichol Phosphate Mannose Synthase from Bacillus sp. with Potential d-allulose 3-epimrase Activity. Biotechnology and Bioprocess Engineering, 2021, 26, 976-984.	2.6	1
61	Molecular Properties of Î ² -Carotene Oxygenases and Their Potential in Industrial Production of Vitamin A and Its Derivatives. Antioxidants, 2022, 11, 1180.	5.1	1