Jan C Van Der Waal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099763/publications.pdf

Version: 2024-02-01

28 papers 3,361 citations

³⁹⁴⁴²¹
19
h-index

26 g-index

30 all docs 30 does citations

30 times ranked

3981 citing authors

#	Article	IF	CITATIONS
1	The Interplay between Kinetics and Thermodynamics in Furan Diels–Alder Chemistry for Sustainable Chemicals Production. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
2	The Interplay between Kinetics and Thermodynamics in Furan Diels–Alder Chemistry for Sustainable Chemicals Production. Angewandte Chemie, 2022, 134, .	2.0	1
3	Humins as bio-based template for the synthesis of alumina foams. Molecular Catalysis, 2022, 526, 112363.	2.0	O
4	Direct Diels–Alder reactions of furfural derivatives with maleimides. Green Chemistry, 2021, 23, 367-373.	9.0	38
5	Continuous flow study of isoeugenol to vanillin: A bio-based iron oxide catalyst. Catalysis Today, 2021, 368, 281-290.	4.4	3
6	Furoic acid and derivatives as atypical dienes in Diels–Alder reactions. Green Chemistry, 2021, 23, 5503-5510.	9.0	29
7	Highly-accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation. Applied Catalysis A: General, 2021, 621, 118179.	4.3	23
8	Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations. Molecular Catalysis, 2019, 479, 110564.	2.0	16
9	All â€~green' composites comprising flax fibres and humins' resins. Composites Science and Technology, 2019, 171, 70-77.	7.8	39
10	Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catalysis Today, 2018, 302, 2-15.	4.4	125
11	Humins from Biorefineries as Thermoreactive Macromolecular Systems. ChemSusChem, 2018, 11, 4246-4255.	6.8	27
12	Reactivity studies in water on the acid-catalysed dehydration of psicose compared to other ketohexoses into 5-hydroxymethylfurfural. Carbohydrate Research, 2017, 446-447, 1-6.	2.3	16
13	Anti-knock quality of sugar derived levulinic esters and cyclic ethers. Fuel, 2017, 202, 414-425.	6.4	39
14	Towards the photophysical studies of humin by-products. Chemical Communications, 2017, 53, 7015-7017.	4.1	14
15	Performance of lignin derived compounds as octane boosters. Fuel, 2017, 189, 284-292.	6.4	33
16	Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chemistry, 2017, 19, 4423-4434.	9.0	57
17	Catalytic Oxidation of Biosourced 3â€Methylphtalic Anhydride under O ₂ : Oneâ€Pot Hemimellitic Acid Synthesis and Novel Example of Biomass Valorization ChemistrySelect, 2017, 2, 10766-10770.	1.5	1
18	Humins as promising material for producing sustainable carbohydrate-derived building materials. Construction and Building Materials, 2017, 139, 594-601.	7.2	60

#	Article	lF	CITATIONS
19	Selectivity Control in the Tandem Aromatization of Bioâ€Based Furanics Catalyzed by Solid Acids and Palladium. ChemSusChem, 2017, 10, 277-286.	6.8	21
20	A Comparative Study on the Reactivity of Various Ketohexoses to Furanics in Methanol. ChemSusChem, 2016, 9, 1827-1834.	6.8	20
21	A Facile Solidâ€Phase Route to Renewable Aromatic Chemicals from Biobased Furanics. Angewandte Chemie, 2016, 128, 1390-1393.	2.0	29
22	A Facile Solidâ€Phase Route to Renewable Aromatic Chemicals from Biobased Furanics. Angewandte Chemie - International Edition, 2016, 55, 1368-1371.	13.8	81
23	Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics. ChemSusChem, 2015, 8, 3052-3056.	6.8	62
24	Experimental and Modeling Studies on the Solubility of <scp>d</scp> -Arabinose, <scp>d</scp> -Fructose, <scp>d</scp> -Glucose, <scp>d</scp> -Mannose, Sucrose and <scp>d</scp> -Xylose in Methanol and Methanol–Water Mixtures. Industrial & Engineering Chemistry Research, 2014, 53, 8285-8290.	3.7	30
25	Dehydration of Different Ketoses and Aldoses to 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 1681-1687.	6.8	90
26	Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013, 113, 1499-1597.	47.7	2,380
27	Promising results with YXY Diesel components in an ESC test cycle using a PACCAR Diesel engine. Biomass and Bioenergy, 2012, 36, 151-159.	5 . 7	63
28	Lignin Derivatives as Potential Octane Boosters. SAE International Journal of Fuels and Lubricants, 0, 8, 415-422.	0.2	10