Hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7099316/publications.pdf

Version: 2024-02-01

279798 182427 3,744 52 23 51 citations h-index g-index papers 61 61 61 6041 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The distinct morphological phenotypes of Southeast Asian aborigines are shaped by novel mechanisms for adaptation to tropical rainforests. National Science Review, 2022, 9, nwab072.	9.5	3
2	Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research, 2022, 50, D27-D38.	14.5	364
3	Origin, loss, and regain of self-incompatibility in angiosperms. Plant Cell, 2022, 34, 579-596.	6.6	30
4	Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. Nature Ecology and Evolution, 2022, 6, 273-287.	7.8	12
5	Pinpointing the animal origins of SARS-CoV-2: a genomic approach. Journal of Genetics and Genomics, 2022, 49, 900-902.	3.9	1
6	Ongoing Positive Selection Drives the Evolution of SARS-CoV-2 Genomes. Genomics, Proteomics and Bioinformatics, 2022, 20, 1214-1223.	6.9	9
7	Variation in the life history strategy underlies functional diversity of tumors. National Science Review, 2021, 8, nwaa124.	9.5	7
8	DatabaseÂResources of the National Genomics Data Center, China National Center for Bioinformation in 2021. Nucleic Acids Research, 2021, 49, D18-D28.	14.5	168
9	Will the largeâ€scale vaccination succeed in containing the COVIDâ€19 pandemic and how soon?. Quantitative Biology, 2021, 9, 304-316.	0.5	3
10	DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nature Communications, 2021, 12, 4280.	12.8	9
11	Current Progress in Evolutionary Comparative Genomics of Great Apes. Frontiers in Genetics, 2021, 12, 657468.	2.3	7
12	Tracing the origins of SARS-CoV-2: lessons learned from the past. Cell Research, 2021, 31, 1139-1141.	12.0	25
13	Genomic Epidemiology of SARS-CoV-2 in Pakistan. Genomics, Proteomics and Bioinformatics, 2021, 19, 727-740.	6.9	8
14	Metagenomic evidence for the co-existence of SARS and H1N1 in patients from 2007-2012 flu seasons in France. Biosafety and Health, 2021, 3, 307-307.	2.7	0
15	Population Genetics of SARS-CoV-2: Disentangling Effects of Sampling Bias and Infection Clusters. Genomics, Proteomics and Bioinformatics, 2020, 18, 640-647.	6.9	44
16	Modeling the epidemic dynamics and control of COVIDâ€19 outbreak in China. Quantitative Biology, 2020, 8, 11-19.	0.5	249
17	Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nature Immunology, 2020, 21, 857-867.	14.5	90
18	Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nature Communications, 2020, 11 , 725 .	12.8	40

#	Article	IF	Citations
19	The Global Landscape of SARS-CoV-2 Genomes, Variants, and Haplotypes in 2019nCoVR. Genomics, Proteomics and Bioinformatics, 2020, 18, 749-759.	6.9	88
20	eGPS 1.0: comprehensive software for multi-omic and evolutionary analyses. National Science Review, 2019, 6, 867-869.	9.5	29
21	Whole Genome Analyses of Chinese Population and De Novo Assembly of A Northern Han Genome. Genomics, Proteomics and Bioinformatics, 2019, 17, 229-247.	6.9	42
22	Ancestry informative SNP panels for discriminating the major East Asian populations: Han Chinese, Japanese and Korean. Annals of Human Genetics, 2019, 83, 348-354.	0.8	12
23	Identifying Lineage-Specific Targets of Natural Selection by a Bayesian Analysis of Genomic Polymorphisms and Divergence from Multiple Species. Molecular Biology and Evolution, 2019, 36, 1302-1315.	8.9	21
24	GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Research, 2019, 29, 682-696.	5 . 5	67
25	A Computational Approach for Modeling the Allele Frequency Spectrum of Populations with Arbitrarily Varying Size. Genomics, Proteomics and Bioinformatics, 2019, 17, 635-644.	6.9	2
26	AIM-SNPtag: A computationally efficient approach for developing ancestry-informative SNP panels. Forensic Science International: Genetics, 2019, 38, 245-253.	3.1	15
27	Inferring Chinese surnames with Y-STR profiles. Forensic Science International: Genetics, 2018, 33, 66-71.	3.1	12
28	Darwinian Positive Selection on the Pleiotropic Effects of KITLG Explain Skin Pigmentation and Winter Temperature Adaptation in Eurasians. Molecular Biology and Evolution, 2018, 35, 2272-2283.	8.9	27
29	An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 2018, 9, 2648.	12.8	167
30	Down-Regulation of <i>EPAS1 </i> /i>Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Biology and Evolution, 2017, 34, msw280.	8.9	87
31	The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity. Scientific Reports, 2017, 7, 1806.	3.3	49
32	Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution. Human Genetics, 2017, 136, 193-204.	3.8	14
33	EP300埪å›é€šè¿‡è°ƒæŽ§ä¸€æ°§åŒ−æ°®å•̂æ^帮助è−æ−亰ç¾ ĕ €,应é«~⎟低氧环境. Zoological Resc	ear eh , 201	7, 188 , 163-11
34	GCH1基å›åœ¨è—æ—é«~原é€,应ä¸å'挥作用. Zoological Research, 2017, 38, 155-162.	2.1	14
35	<i>HMOX2</i> Functions as a Modifier Gene for High-Altitude Adaptation in Tibetans. Human Mutation, 2016, 37, 216-223.	2.5	40
36	Base-Biased Evolution of Disease-Associated Mutations in the Human Genome. Human Mutation, 2016, 37, 1209-1214.	2.5	5

#	Article	IF	CITATIONS
37	A Genetic Mechanism for Convergent Skin Lightening during Recent Human Evolution. Molecular Biology and Evolution, 2016, 33, 1177-1187.	8.9	43
38	Inferring Very Recent Population Growth Rate from Population-Scale Sequencing Data: Using a Large-Sample Coalescent Estimator. Molecular Biology and Evolution, 2015, 32, 2996-3011.	8.9	11
39	A hidden Markov model for investigating recent positive selection through haplotype structure. Theoretical Population Biology, 2015, 99, 18-30.	1.1	41
40	Population genetic studies in the genomic sequencing era. Zoological Research, 2015, 36, 223-32.	0.6	6
41	Tracing Pastoralist Migrations to Southern Africa with Lactase Persistence Alleles. Current Biology, 2014, 24, 875-879.	3.9	166
42	The Interplay between Natural Selection and Susceptibility to Melanoma on Allele 374F of SLC45A2 Gene in a South European Population. PLoS ONE, 2014, 9, e104367.	2.5	20
43	Genetic Evidence of Paleolithic Colonization and Neolithic Expansion of Modern Humans on the Tibetan Plateau. Molecular Biology and Evolution, 2013, 30, 1761-1778.	8.9	194
44	Modeling Recent Human Evolution in Mice by Expression of a Selected EDAR Variant. Cell, 2013, 152, 691-702.	28.9	250
45	Inferring Selection Intensity and Allele Age from Multilocus Haplotype Structure. G3: Genes, Genomes, Genetics, 2013, 3, 1429-1442.	1.8	26
46	Identification of a Tibetan-Specific Mutation in the Hypoxic Gene EGLN1 and Its Contribution to High-Altitude Adaptation. Molecular Biology and Evolution, 2013, 30, 1889-1898.	8.9	151
47	Asymptotic Distributions of Coalescence Times and Ancestral Lineage Numbers for Populations with Temporally Varying Size. Genetics, 2013, 194, 721-736.	2.9	31
48	Intercoalescence Time Distribution of Incomplete Gene Genealogies in Temporally Varying Populations, and Applications in Population Genetic Inference. Annals of Human Genetics, 2013, 77, 158-173.	0.8	7
49	The joint allele frequency spectrum of multiple populations: A coalescent theory approach. Theoretical Population Biology, 2012, 81, 179-195.	1.1	49
50	Genetic Variations in Tibetan Populations and High-Altitude Adaptation at the Himalayas. Molecular Biology and Evolution, 2011, 28, 1075-1081.	8.9	327
51	Population differentiation as a test for selective sweeps. Genome Research, 2010, 20, 393-402.	5. 5	600
52	The Joint Allele-Frequency Spectrum in Closely Related Species. Genetics, 2007, 177, 387-398.	2.9	28