Sergio Molinari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097956/publications.pdf

Version: 2024-02-01

28274 19190 14,531 194 55 118 citations h-index g-index papers 196 196 196 5199 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring the link between star and planet formation with Ariel. Experimental Astronomy, 2022, 53, 225-278.	3.7	18
2	The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission. Astronomy and Astrophysics, 2022, 662, A96.	5.1	15
3	Distance of Hi-GAL sources. Astronomy and Astrophysics, 2021, 646, A74.	5.1	24
4	Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur. Astrophysical Journal, 2021, 909, 40.	4.5	67
5	The Hi-GAL compact source catalogue – II. The 360° catalogue of clump physical properties. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2742-2766.	4.4	45
6	The Planck Submillimeter Properties of Galactic High-mass Star-forming Regions: Dust Temperatures, Luminosities, Masses, and Star Formation Efficiency. Astrophysical Journal, 2021, 911, 69.	4.5	0
7	The far-infrared spectroscopic surveyor (FIRSS). Experimental Astronomy, 2021, 51, 699-728.	3.7	6
8	Protoplanetary Disk Birth in Massive Star-forming Clumps: The Essential Role of the Magnetic Field. Astrophysical Journal Letters, 2021, 917, L10.	8.3	28
9	Molecular cloud catalogue from ¹³ CO (1–0) data of the Forgotten Quadrant Survey. Astronomy and Astrophysics, 2021, 654, A144.	5.1	6
10	The census of dense cores in the Serpens region from the <i>Herschel</i> Gould Belt Survey. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4257-4276.	4.4	17
11	The SEDIGISM survey: First Data Release and overview of the Galactic structure. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3064-3082.	4.4	53
12	The SEDIGISM survey: molecular clouds in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3027-3049.	4.4	35
13	Multiscale dynamics in star-forming regions: the interplay between gravity and turbulence. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4310-4324.	4.4	16
14	The evolutionary status of protostellar clumps hosting class II methanol masers. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2015-2041.	4.4	12
15	The Hi-GAL catalogue of dusty filamentary structures in the Galactic plane. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5420-5456.	4.4	40
16	The Forgotten Quadrant Survey. Astronomy and Astrophysics, 2020, 633, A147.	5.1	13
17	Weak and Compact Radio Emission in Early High-mass Star-forming Regions. II. The Nature of the Radio Sources. Astrophysical Journal, 2019, 880, 99.	4.5	24
18	The G332 molecular cloud ring: I. Morphology and physical characteristics. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2089-2118.	4.4	3

#	Article	IF	CITATIONS
19	Evolution of young protoclusters embedded in dense massive clumps. A new grid of population synthesis SED models and a new set of L/M evolutionary tracks. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4508-4525.	4.4	10
20	Thermal balance and comparison of gas and dust properties of dense clumps in the Hi-GAL survey. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5355-5379.	4.4	12
21	Characterising the high-mass star forming filament G351.776–0.527 with Herschel and APEX dust continuum and gas observations. Astronomy and Astrophysics, 2019, 621, A130.	5.1	9
22	VIALACTEA science gateway for Milky Way analysis. Future Generation Computer Systems, 2019, 94, 947-956.	7. 5	2
23	First Extended Catalogue of Galactic bubble infrared fluxes from WISE and Herschelâ~ surveys. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3671-3692.	4.4	3
24	Bipolar H†II regions. Astronomy and Astrophysics, 2018, 617, A67.	5.1	20
25	Testing the Larson relations in massive clumps. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2220-2242.	4.4	57
26	The dense cores and filamentary structure of the molecular cloud in Corona Australis: <i>Herschel</i> SPIRE and PACS observations from the <i>Herschel</i> Gould Belt Survey. Astronomy and Astrophysics, 2018, 615, A125.	5.1	30
27	Massive 70 μm quiet clumps – II. Non-thermal motions driven by gravity in massive star formation?. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4975-4985.	4.4	41
28	Large-scale properties of the clump mass function. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1831-1849.	4.4	4
29	Vialactea Visual Analytics Tool for Star Formation Studies of the Galactic Plane. Publications of the Astronomical Society of the Pacific, 2018, 130, 084503.	3.1	3
30	The role of spiral arms in Milky Way star formation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2361-2373.	4.4	18
31	Multifractal analysis of the interstellar medium: first application to Hi-GAL observations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 509-532.	4.4	17
32	A possible observational bias in the estimation of the virial parameter in virialized clumps. Astronomy and Astrophysics, 2018, 619, L7.	5.1	20
33	<i>C</i> ³ , A Command-line Catalog Cross-match Tool for Large Astrophysical Catalogs. Publications of the Astronomical Society of the Pacific, 2017, 129, 024005.	3.1	18
34	The Milky Way rotation curve revisited. Astronomy and Astrophysics, 2017, 601, L5.	5.1	21
35	Dust and gas environment of the young embedded cluster IRAS 18511+0146. Astronomy and Astrophysics, 2017, 599, A38.	5.1	1
36	Spatial distribution of star formation related to ionized regions throughout the inner Galactic plane. Astronomy and Astrophysics, 2017, 605, A35.	5.1	27

#	Article	IF	Citations
37	The earliest phases of high-mass star formation, as seen in NGC 6334 by <i>Herschel</i> HOBYS. Astronomy and Astrophysics, 2017, 602, A77.	5.1	65
38	High-resolution Observations of the Massive Protostar in IRAS 18566+0408. Astrophysical Journal, 2017, 843, 99.	4.5	9
39	Distance biases in the estimation of the physical properties of Hi-GAL compact sources – I. Clump properties and the identification of high-mass star-forming candidates. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3682-3705.	4.4	28
40	The Hi-GAL compact source catalogue $\hat{a} \in \mathbb{N}$. The physical properties of the clumps in the inner Galaxy $(\hat{a}^711_{}^{circ})$ &It \hat{a} ,	4.4	125
41	Massive $70 \hat{A}^{1}/4$ m quiet clumps I: evidence of embedded low/intermediate-mass star formation activity. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3882-3923.	4.4	26
42	Discussing the distance bias in the estimation of Hi-GAL compact source physical properties – II. Evolutionary status and star formation rate. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1778-1791.	4.4	6
43	Multitemperature mapping of dust structures throughout the Galactic Plane using the PPMAP tool with Herschel Hi-GAL data. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2730-2742.	4.4	87
44	Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4147-4158.	4.4	11
45	An analysis of star formation with <i>Herschel </i> i>in the Hi-GAL Survey. Astronomy and Astrophysics, 2017, 599, A7.	5.1	15
46	Source clustering in the Hi-GAL survey determined using a minimum spanning tree method. Astronomy and Astrophysics, 2017, 597, A114.	5.1	7
47	CALIBRATION OF EVOLUTIONARY DIAGNOSTICS IN HIGH-MASS STAR FORMATION. Astrophysical Journal Letters, 2016, 826, L8.	8.3	47
48	The initial conditions for stellar protocluster formation. Astronomy and Astrophysics, 2016, 590, A72.	5.1	34
49	Large-scale latitude distortions of the inner Milky Way disk from the <i>Herschel </i> /i>/Hi-GAL Survey. Astronomy and Astrophysics, 2016, 588, A75.	5.1	5
50	Hi-GAL, the <i>Herschel </i> i>infrared Galactic Plane Survey: photometric maps and compact source catalogues. Astronomy and Astrophysics, 2016, 591, A149.	5.1	189
51	Integrated data access, visualization and analysis for Galactic Plane surveys: the VIALACTEA case. Proceedings of the International Astronomical Union, 2016, 12, 291-298.	0.0	1
52	The physical and chemical structure of Sagittarius B2. Astronomy and Astrophysics, 2016, 588, A143.	5.1	99
53	INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS. Astrophysical Journal, 2016, 818, 95.	4.5	33
54	Outflow structure within 1000 au of high-mass YSOs. Astronomy and Astrophysics, 2016, 585, A71.	5.1	53

#	Article	IF	Citations
55	The Far Infrared Spectroscopic Explorer (FIRSPEX): probing the lifecycle of the ISM in the universe. Proceedings of SPIE, 2016, , .	0.8	3
56	The prevalence of star formation as a function of Galactocentric radius. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3123-3129.	4.4	33
57	Physical properties of Galactic <i>Planck</i> cold cores revealed by the Hi-GAL survey. Astronomy and Astrophysics, 2016, 591, A105.	5.1	11
58	Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images. , 2016, , .		1
59	Molecular gas kinematics within the central 250Âpc of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2675-2702.	4.4	154
60	The Carina Nebula and Gum 31 molecular complex – I. Molecular gas distribution, column densities, and dust temperatures. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2406-2424.	4.4	37
61	Origin of the Lyman excess in early-type stars. Astronomy and Astrophysics, 2016, 588, L5.	5.1	9
62	The ASKAP/EMU Source Finding Data Challenge. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	39
63	Bipolar H II regions – Morphology and star formation in their vicinity. Astronomy and Astrophysics, 2015, 582, A1.	5.1	54
64	The initial conditions of stellar protocluster formation – II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15° ≠l ≠55°. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3089-3106.	4.4	52
65	Not a galaxy: IRASÂ04186+5143, a new young stellar cluster in the outer Galaxy. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1523-1534.	4.4	4
66	Herschel Hi-GAL imaging of massive young stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2784-2793.	4.4	3
67	Large-scale filaments associated with Milky Way spiral arms. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4043-4049.	4.4	115
68	Gravity as main driver of non-thermal motions in massive star forming regions. EAS Publications Series, 2015, 75-76, 185-188.	0.3	3
69	Infrared emission of young HII regions: a <i>Herschel</i> /li-GAL study. Astronomy and Astrophysics, 2015, 579, A71.	5.1	26
70	THE YOUNG STELLAR OBJECT POPULATION IN THE VELA-D MOLECULAR CLOUD. Astrophysical Journal, 2015, 798, 104.	4.5	8
71	unimap: a generalized least-squares map maker for Herschel data. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1471-1483.	4.4	49
72	Filaments in the Lupus molecular clouds. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2036-2049.	4.4	31

#	Article	IF	CITATIONS
73	Star and jet multiplicity in the high-mass star forming region IRAS 05137+3919. Astronomy and Astrophysics, 2015, 581, A124.	5.1	3
74	The impact of SKA on Galactic Radioastronomy: continuum observations., 2015,,.		2
75	Star and Stellar Cluster Formation: ALMA-SKA Synergies. , 2015, , .		0
76	Discovery of weak 6.7 GHz CH ₃ OH masers in a sample of high-mass Hi-GAL sources. Astronomy and Astrophysics, 2014, 566, A18.	5.1	17
77	A subarcsecond study of the hot molecular core in G023.01â^'00.41. Astronomy and Astrophysics, 2014, 565, A34.	5.1	19
78	The pros and cons of the inversion method approach to derive 3D dust emission properties in the ISM: the Hi-GAL field centred on $(l, b) = (30\hat{A}, 0\hat{A})$. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3588-3612.	4.4	3
79	Herschel, Spitzer and Magellan infrared observations of the star-forming region RCWÂ121 (IRASÂ17149â^3916)â~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 606-621.	4.4	15
80	A Herschel and BIMA study of the sequential star formation near the WÂ48A H ii regionâ~ Monthly Notices of the Royal Astronomical Society, 2014, 440, 427-447.	4.4	7
81	THE IDENTIFICATION OF FILAMENTS ON FAR-INFRARED AND SUBMILLIMITER IMAGES: MORPHOLOGY, PHYSICAL CONDITIONS AND RELATION WITH STAR FORMATION OF FILAMENTARY STRUCTURE. Astrophysical Journal, 2014, 791, 27.	4.5	99
82	CHARACTERIZING THE STRUCTURE OF DIFFUSE EMISSION IN Hi-GAL MAPS. Astrophysical Journal, 2014, 788, 3.	4.5	16
83	The molecular complex associated with the Galactic H II region Sh2-90: a possible site of triggered star formation. Astronomy and Astrophysics, 2014, 566, A122.	5.1	48
84	A necklace of dense cores in the high-mass star forming region G35.20â^'0.74 N: ALMA observations. Astronomy and Astrophysics, 2014, 569, A11.	5.1	63
85	On the shape of the mass-function of dense clumps in the Hi-GAL fields. Astronomy and Astrophysics, 2014, 564, A87.	5.1	6
86	The Milky Way as a Star Formation Engine. , 2014, , .		9
87	Estimating Gaia's performance for O stars in the Outer Galactic plane using <i>Herschel </i> data. EAS Publications Series, 2014, 67-68, 397-397.	0.3	0
88	TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE <i>HERSCHEL</i> CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A. Astrophysical Journal Letters, 2013, 777, L33.	8.3	95
89	Variations in the Galactic star formation rate and density thresholds for star formation. Monthly Notices of the Royal Astronomical Society, 2013, 429, 987-1000.	4.4	254
90	Gamma-Light: High-Energy Astrophysics above 10 MeV. Nuclear Physics, Section B, Proceedings Supplements, 2013, 239-240, 193-198.	0.4	18

#	Article	IF	Citations
91	Candidate super star cluster progenitor gas clouds possibly triggered by close passage to Sgr A*. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 433, L15-L19.	3.3	104
92	THE FIRST HI-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216.°5 ≲ ℓ ≲ 225.°5. Astrophysical Journal, 2013,	77 ⁴ ; ⁵ 45.	98
93	<i>HERSCHEL</i> REVEALS MASSIVE COLD CLUMPS IN NGC 7538. Astrophysical Journal, 2013, 773, 102.	4.5	23
94	<i>Herschel</i> view of the Taurus B211/3 filament and striations: evidence of filamentary growth?. Astronomy and Astrophysics, 2013, 550, A38.	5.1	393
95	<i>Herschel</i> observations of the SagittariusÂB2 cores: Hydrides, warm CO, and cold dust. Astronomy and Astrophysics, 2013, 556, A137.	5.1	49
96	Physical properties of high-mass clumps in different stages of evolution. Astronomy and Astrophysics, 2013, 556, A16.	5.1	45
97	Global collapse of molecular clouds as a formation mechanism for the most massive stars. Astronomy and Astrophysics, 2013, 555, A112.	5.1	259
98	The <i>Herschel</i> view of the massive star-forming region NGCÂ6334. Astronomy and Astrophysics, 2013, 554, A42.	5.1	69
99	On the shape of the mass-function of dense clumps in the Hi-GAL fields. Astronomy and Astrophysics, 2013, 551, All1.	5.1	28
100	An analysis of star formation with <i>Herschel </i> in the Hi-GAL survey. Astronomy and Astrophysics, 2013, 549, A130.	5.1	38
101	Recent star formation in the Lupus clouds as seen by <i>Herschel</i> . Astronomy and Astrophysics, 2013, 549, L1.	5.1	39
102	Different evolutionary stages in massive star formation. Astronomy and Astrophysics, 2013, 550, A21.	5.1	50
103	A Hi-GAL study of the high-mass star-forming region G29.96–0.02. Astronomy and Astrophysics, 2013, 552, A123.	5.1	28
104	Evolution and excitation conditions of outflows in high-mass star-forming regions. Astronomy and Astrophysics, 2013, 557, A94.	5.1	56
105	The on-board software of the HERSCHEL/PACS instrument: three successful years of in-flight operations. Proceedings of SPIE, 2012, , .	0.8	0
106	Herschel-SPIRE satellite instrument: configurable on-board software for autonomous and real time operation. , 2012, , .		1
107	Detection and characterization of a 500ÂÂÂ <i>\hat{l}_4</i> m dust emissivity excess in the Galactic plane using <i>Herschel</i> Hi-GAL observations. Astronomy and Astrophysics, 2012, 537, A113.	5.1	32
108	G0.253 + 0.016: A MOLECULAR CLOUD PROGENITOR OF AN ARCHES-LIKE CLUSTER. Astrophysical Journal, 2012, 746, 117.	4.5	138

#	Article	IF	Citations
109	TheHerschelview of the on-going star formation in the Vela-C molecular cloud. Astronomy and Astrophysics, 2012, 539, A156.	5.1	54
110	A MULTI-WAVELENGTH INVESTIGATION OF RCW175: AN H II REGION HARBORING SPINNING DUST EMISSION. Astrophysical Journal, 2012, 754, 94.	4.5	37
111	The G305 star-forming complex: embedded massive star formation discovered by <i>Herschel </i> Hi-GAL. Monthly Notices of the Royal Astronomical Society, 2012, 426, 402-415.	4.4	31
112	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
113	Identifying Type IIn supernova progenitors in our Galaxy: the circumstellar environment of the Galactic luminous blue variable candidate Gal 026.47+0.02. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2975-2984.	4.4	10
114	<i>Herschel</i> observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud. Astronomy and Astrophysics, 2012, 547, A54.	5.1	92
115	Multiline spectral imaging of dense cores in the Lupus molecular cloud. Monthly Notices of the Royal Astronomical Society, 2012, 419, 238-250.	4.4	25
116	Cores in infrared dark clouds (IRDCs) seen in the Hi-GAL survey between $l=300 {\rm \AA}^{\circ}$ and $330 {\rm \AA}^{\circ}$. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1071-1082.	4.4	27
117	Isolated starless cores in infrared dark clouds in the Hi-GAL survey. Monthly Notices of the Royal Astronomical Society, 2012, 424, 716-727.	4.4	12
118	The spine of the swan: a <i>Herschel</i> study of theÂDR21 ridge and filaments in CygnusÂX. Astronomy and Astrophysics, 2012, 543, L3.	5.1	157
119	Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds. Astronomy and Astrophysics, 2011, 530, A133.	5.1	101
120	Characterizing precursors to stellar clusters with <i>Herschel </i> . Astronomy and Astrophysics, 2011, 535, A128.	5.1	129
121	The initial conditions of high-mass star formation: radiative transfer models of IRDCs seen in the <i>Herschel </i> Hi-GAL survey. Astronomy and Astrophysics, 2011, 526, A159.	5.1	13
122	A 100 pc ELLIPTICAL AND TWISTED RING OF COLD AND DENSE MOLECULAR CLOUDS REVEALED BY <i>HERSCHEL</i> AROUND THE GALACTIC CENTER. Astrophysical Journal Letters, 2011, 735, L33.	8.3	270
123	CLUSTERING PROPERTIES OF FAR-INFRARED SOURCES IN Hi-GAL SCIENCE DEMONSTRATION PHASE FIELDS. Astrophysical Journal, 2011, 735, 28.	4.5	16
124	SiO outflows in high-mass star forming regions: A potential chemical clock?. Astronomy and Astrophysics, 2011, 526, L2.	5.1	51
125	Giving physical significance to the Hi-GAL data: determining theÂdistance of cold dusty cores in the Milky Way. Astronomy and Astrophysics, 2011, 526, A151.	5.1	47
126	Filaments and ridges in VelaÂC revealed by <i>Herschel</i> : from low-mass to high-mass star-forming sites. Astronomy and Astrophysics, 2011, 533, A94.	5.1	188

#	Article	IF	CITATIONS
127	Characterizing interstellar filaments with <i>Herschel </i> i>in IC 5146. Astronomy and Astrophysics, 2011, 529, L6.	5.1	560
128	Data reduction pipeline for the Hi-GAL survey. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2932-2943.	4.4	110
129	ATLASGAL: the APEX Telescope Large Area Survey of the Galaxy. EAS Publications Series, 2011, 52, 129-134.	0.3	1
130	The <i>Herschel</i> view of massive star formation in G035.39â€"00.33: dense and cold filament of W48 undergoing a mini-starburst. Astronomy and Astrophysics, 2011, 535, A76.	5.1	79
131	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
132	Filamentary structures and compact objects in the Aquila and Polaris clouds observed by <i>Herschel i>Astronomy and Astrophysics, 2010, 518, L103.</i>	5.1	188
133	First detection of the methylidyne cation (CH ⁺) fundamental rotational line with the <i>Herschel</i> /SPIRE FTS. Astronomy and Astrophysics, 2010, 518, L117.	5.1	35
134	<i>Herschel</i> -SPIRE spectroscopy of the DR21 molecular cloud core. Astronomy and Astrophysics, 2010, 518, L114.	5.1	15
135	SPIRE spectroscopy of the prototypical Orion Bar photodissociation region. Astronomy and Astrophysics, 2010, 518, L116.	5.1	59
136	<i>Herschel</i> -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale. Astronomy and Astrophysics, 2010, 518, L104.	5.1	136
137	Direct estimate of cirrus noise in <i>Herschel</i> Hi-GAL images. Astronomy and Astrophysics, 2010, 518, L105.	5.1	30
138	The Aquila prestellar core population revealed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L106.	5.1	213
139	A <i>Herschel</i> study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE. Astronomy and Astrophysics, 2010, 518, L92.	5.1	87
140	From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the <i>Herschel </i> /i>Gould Belt Survey. Astronomy and Astrophysics, 2010, 518, L102.	5.1	1,089
141	DUST IN THE DIFFUSE EMISSION OF THE GALACTIC PLANE: THE <i>HERSCHEL</i> / <i> SPITZER</i> SPECTRAL ENERGY DISTRIBUTION FITTING. Astrophysical Journal Letters, 2010, 724, L44-L47.	8.3	47
142	The <i>Herschel</i> -SPIRE instrument and its in-flight performance. Astronomy and Astrophysics, 2010, 518, L3.	5.1	1,744
143	Modelling Herschel observations of infrared-dark clouds in the Hi-GAL surveyâ* Monthly Notices of the Royal Astronomical Society, 2010, 409, 12-21.	4.4	9
144	Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane. Astronomy and Astrophysics, 2010, 520, L8.	5.1	90

#	Article	IF	CITATIONS
145	Clouds, filaments, and protostars: The <i>Herschel</i> i> Hi-GAL Milky Way. Astronomy and Astrophysics, 2010, 518, L100.	5.1	573
146	Physical properties of the Sh2-104 H IIÂregion as seen by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L80.	5.1	20
147	Dust temperature tracing the ISRF intensity in the Galaxy. Astronomy and Astrophysics, 2010, 518, L88.	5.1	151
148	Mapping the column density and dust temperature structure of IRDCs with <i>Herschel </i> . Astronomy and Astrophysics, 2010, 518, L98.	5.1	90
149	<i>Herschel</i> observations of the W43 "mini-starburst― Astronomy and Astrophysics, 2010, 518, L90.	5.1	57
150	Small-scale structure in the Rosette molecular cloud revealed by \hat{A} i>Herschel (i). Astronomy and Astrophysics, 2010, 518, L91.	5.1	34
151	The <i>Herschel </i> view of star formation in the Rosette molecular cloud under the influence of NGCÂ2244. Astronomy and Astrophysics, 2010, 518, L83.	5.1	43
152	<i>Herschel</i> observations of embedded protostellar clusters inÂtheÂRosette molecular cloud. Astronomy and Astrophysics, 2010, 518, L84.	5.1	34
153	Evolution of interstellar dust with <i>Herschel</i> . First results in the photodissociation regions of NGC 7023. Astronomy and Astrophysics, 2010, 518, L96.	5.1	43
154	A <i>Herschel</i> study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey. Astronomy and Astrophysics, 2010, 518, L97.	5.1	60
155	The physical properties of the dust in the RCWÂ120 H ii region asÂseen by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L99.	5.1	51
156	The <i>Herschel</i> first look at protostars in the Aquila rift. Astronomy and Astrophysics, 2010, 518, L85.	5.1	112
157	Initial highlights of the HOBYS key program, the <i>Herschel </i> ii>imaging survey of OB young stellar objects. Astronomy and Astrophysics, 2010, 518, L77.	5.1	174
158	Star formation triggered by H II regions in our Galaxy. Astronomy and Astrophysics, 2010, 518, L101.	5.1	65
159	Hi-GAL: The Herschel Infrared Galactic Plane Survey. Publications of the Astronomical Society of the Pacific, 2010, 122, 314-325.	3.1	440
160	The molecular environment of the Galactic star forming region G19.61–0.23. Astronomy and Astrophysics, 2010, 520, A50.	5.1	3
161	<i>Herschel</i> -SPIRE spectroscopy of G29.96-0.02: Fitting the full SED. Astronomy and Astrophysics, 2010, 518, L82.	5.1	15
162	Properties of stellar clusters around high-mass young stars. Astronomy and Astrophysics, 2009, 503, 801-816.	5.1	32

#	Article	IF	Citations
163	ATLASGAL – The APEX telescope large area survey of the galaxy at 870Â\$mathsf{mu}\$m. Astronomy and Astrophysics, 2009, 504, 415-427.	5.1	577
164	MIPSGAL: A Survey of the Inner Galactic Plane at 24 and $70\hat{A}\hat{I}\frac{1}{4}$ m. Publications of the Astronomical Society of the Pacific, 2009, 121, 76-97.	3.1	535
165	Star Formation Histories from Pan-Chromatic Infrared Continuum Surveys. Proceedings of the International Astronomical Union, 2009, 5, 802-802.	0.0	0
166	The evolution of the spectral energy distribution in massive young stellar objects. Astronomy and Astrophysics, 2008, 481, 345-365.	5.1	189
167	The pre-ZAMS nature of Mol160/IRAS 23385+6053 confirmed byÂ <i>Spitzer</i> . Astronomy and Astrophysics, 2008, 487, 1119-1128.	5.1	17
168	IRASÂ18511+0146: a proto Herbig Ae/Be cluster?. Astronomy and Astrophysics, 2007, 470, 977-989.	5.1	10
169	Search for massive protostar candidates in the southern hemisphere. Astronomy and Astrophysics, 2006, 447, 221-233.	5.1	114
170	Searching for massive pre-stellar cores through observations of N\$_mathsf{2}\$H+and N\$_mathsf{2}\$D+. Astronomy and Astrophysics, 2006, 460, 709-720.	5.1	64
171	Search for CO Outflows toward a Sample of 69 Highâ€Mass Protostellar Candidates. II. Outflow Properties. Astrophysical Journal, 2005, 625, 864-882.	4.5	225
172	Search for massive protostellar candidates in the southern hemisphere. Astronomy and Astrophysics, 2005, 432, 921-935.	5.1	69
173	Nature of two massive protostellar candidates: IRAS 21307+5049 and IRAS 22172+5549. Astronomy and Astrophysics, 2004, 424, 179-195.	5.1	23
174	Millimetre observations of the IRAS 18162â^'2048 outflow: evidence for cloud disruption around an intermediate-mass protostar. Monthly Notices of the Royal Astronomical Society, 2004, 347, 295-306.	4.4	15
175	IRAS 23385+6053: A candidate protostellar massive object. Astronomy and Astrophysics, 2004, 414, 299-315.	5.1	28
176	The Formation of Massive Stars. I. Highâ€Resolution Millimeter and Radio Studies of Highâ€Mass Protostellar Candidates. Astrophysical Journal, 2002, 570, 758-778.	4.5	75
177	ISO long wavelength spectrometer interactive analysis system. , 2002, 4847, 435.		2
178	Far-Infrared Spectroscopy of the HH 1/2 Outflow. Astronomical Journal, 2002, 123, 2010-2018.	4.7	19
179	Search for CO Outflows toward a Sample of 69 High-Mass Protostellar Candidates: Frequency of Occurrence. Astrophysical Journal, 2001, 552, L167-L170.	4.5	136
180	A molecular-line study of clumps with embedded high-mass protostar candidates. Astronomy and Astrophysics, 2001, 370, 230-264.	5.1	44

#	Article	IF	Citations
181	A Shockâ€induced Photodissociation Region in the HH 80/81 Flow: Farâ€Infrared Spectroscopy. Astrophysical Journal, 2001, 547, 292-301.	4.5	16
182	Infrared and Millimetric Study of the Young Outflow Cepheus E. Astrophysical Journal, 2001, 555, 146-159.	4.5	36
183	Infrared Space ObservatorySpectroscopy of HH 7–11 Flow and Its Redshifted Counterpart. Astrophysical Journal, 2000, 538, 698-709.	4.5	35
184	Detection of the 62 Micron Crystalline H[TINF]2[/TINF]O Ice Feature in Emission toward HH 7 with the [ITAL]Infrared Space Observatory[/ITAL] Long-Wavelength Spectrometer. Astrophysical Journal, 1999, 521, L71-L74.	4.5	28
185	Calibration and performance of the LWS. Advances in Space Research, 1998, 21, 5-9.	2.6	4
186	ISOCAM Molecular Hydrogen Images of the Cepheus E Outflow. Astronomical Journal, 1998, 116, 1388-1395.	4.7	14
187	IRAS 23385+6053: A Prototype Massive Class O Object. Astrophysical Journal, 1998, 505, L39-L42.	4.5	70
188	Young Stellar Objects in L1641: A Submillimeter Continuum Study. Astrophysics and Space Science Library, 1997, , 177-178.	2.7	0
189	The distribution of gas and dust in the ϕoph cloud. , 1995, , 158-159.		0
190	Luminosity vs. Circumstellar mass: An evolutionary diagram for YSOs. , 1995, , 300-303.		0
191	Outflow-free class I sources: Protostars?. , 1995, , 314-315.		O
192	Searching for protostars. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 567-574.	0.2	0
193	On the nature of class-I sources in ϕophiuchus. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 597-603.	0.2	0
194	Near-infrared variability ((1 \tilde{A} · 10) $\hat{1}$ $\frac{1}{4}$ m) of Herbig-Haro exciting sources. Il Nuovo Cimento Della Societ \tilde{A} Italiana Di Fisica C, 1992, 15, 1033-1038.	0.2	O