Rana Al-Sadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097843/publications.pdf

Version: 2024-02-01

26 papers 4,013 citations

304743

22

h-index

25 g-index

26 all docs

26 docs citations

times ranked

26

5016 citing authors

#	Article	IF	CITATIONS
1	Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLoS ONE, 2021, 16, e0249544.	2.5	36
2	Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2–Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. American Journal of Pathology, 2021, 191, 872-884.	3.8	53
3	Bifidobacterium bifidum Enhances the Intestinal Epithelial Tight Junction Barrier and Protects against Intestinal Inflammation by Targeting the Toll-like Receptor-2 Pathway in an NF-κB-Independent Manner. International Journal of Molecular Sciences, 2021, 22, 8070.	4.1	44
4	Penicillin Allergy Label Increases Risk of Worse Clinical Outcomes in COVID-19. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3629-3637.e2.	3.8	6
5	IL- $\hat{1}^2$ and the Intestinal Epithelial Tight Junction Barrier. Frontiers in Immunology, 2021, 12, 767456.	4.8	142
6	Talk about micromanaging! Role of microRNAs in intestinal barrier function. American Journal of Physiology - Renal Physiology, 2020, 319, G170-G174.	3.4	19
7	IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology, 2020, 159, 1375-1389.	1.3	106
8	Lipopolysaccharide-Induced Increase in Intestinal Permeability Is Mediated by TAK-1 Activation of IKK and MLCK/MYLK Gene. American Journal of Pathology, 2019, 189, 797-812.	3.8	61
9	MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. American Journal of Physiology - Renal Physiology, 2019, 316, G278-G290.	3.4	39
1	02/0-0290.		
10	Tight Junctions and the Intestinal Barrier. , 2018, , 587-639.		18
10		3.8	18
	Tight Junctions and the Intestinal Barrier. , 2018, , 587-639. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain	3.8	
11	Tight Junctions and the Intestinal Barrier., 2018, , 587-639. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. American Journal of Pathology, 2017, 187, 2698-2710. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the		150
11 12	Tight Junctions and the Intestinal Barrier., 2018, , 587-639. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. American Journal of Pathology, 2017, 187, 2698-2710. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-ÎB Pathway. American Journal of Pathology, 2016, 186, 1151-1165. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. American Journal of Physiology - Renal	3.8	150 151
11 12 13	Tight Junctions and the Intestinal Barrier. , 2018, , 587-639. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. American Journal of Pathology, 2017, 187, 2698-2710. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-βB Pathway. American Journal of Pathology, 2016, 186, 1151-1165. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G988-G997. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal	3.8	150 151 95
11 12 13	Tight Junctions and the Intestinal Barrier., 2018, , 587-639. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. American Journal of Pathology, 2017, 187, 2698-2710. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-ή Pathway. American Journal of Pathology, 2016, 186, 1151-1165. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G988-G997. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. Journal of Immunology, 2015, 195, 4999-5010. Interleukin-6 Modulation of Intestinal Epithelial Tight Junction Permeability Is Mediated by JNK Pathway	3.8 3.4 0.8	150 151 95 297
11 12 13 14	Tight Junctions and the Intestinal Barrier., 2018,, 587-639. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. American Journal of Pathology, 2017, 187, 2698-2710. TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-α Pathway. American Journal of Pathology, 2016, 186, 1151-1165. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G988-G997. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. Journal of Immunology, 2015, 195, 4999-5010. Interleukin-6 Modulation of Intestinal Epithelial Tight Junction Permeability Is Mediated by JNK Pathway Activation of Claudin-2 Gene. PLoS ONE, 2014, 9, e85345. TNF-α Modulation of Intestinal Epithelial Tight Junction Barrier Is Regulated by ERK1/2 Activation of	3.8 3.4 0.8	150 151 95 297

#	Article	lF	CITATION
19	Mechanism of Interleukin- $1\hat{l}^2$ Induced-Increase in Mouse Intestinal Permeability (i) In Vivo (i). Journal of Interferon and Cytokine Research, 2012, 32, 474-484.	1.2	84
20	MicroRNA Regulation of Intestinal Epithelial Tight Junction Permeability. Gastroenterology, 2011, 141, 1323-1333.	1.3	258
21	Cellular and molecular mechanism of interleukin- $1\hat{l}^2$ modulation of Caco-2 intestinal epithelial tight junction barrier. Journal of Cellular and Molecular Medicine, 2011, 15, 970-982.	3.6	71
22	Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology - Renal Physiology, 2011, 300, G1054-G1064.	3.4	312
23	IL-1β-Induced Increase in Intestinal Epithelial Tight Junction Permeability Is Mediated by MEKK-1 Activation of Canonical NF-κB Pathway. American Journal of Pathology, 2010, 177, 2310-2322.	3.8	168
24	Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience - Landmark, 2009, Volume, 2765.	3.0	465
25	Mechanism of IL- $\hat{\Pi}^2$ -Induced Increase in Intestinal Epithelial Tight Junction Permeability. Journal of Immunology, 2008, 180, 5653-5661.	0.8	342
26	Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. American Journal of Physiology - Renal Physiology, 2007, 292, G590-G598.	3.4	106