
Rana Al-Sadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7097843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability inÂVitro and inÂVivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14. American Journal of Pathology, 2013, 182, 375-387.	3.8	498
2	Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience - Landmark, 2009, Volume, 2765.	3.0	465
3	Mechanism of IL-1β-Induced Increase in Intestinal Epithelial Tight Junction Permeability. Journal of Immunology, 2008, 180, 5653-5661.	0.8	342
4	Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology - Renal Physiology, 2011, 300, G1054-G1064.	3.4	312
5	Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. Journal of Immunology, 2015, 195, 4999-5010.	0.8	297
6	MicroRNA Regulation of Intestinal Epithelial Tight Junction Permeability. Gastroenterology, 2011, 141, 1323-1333.	1.3	258
7	Interleukin-6 Modulation of Intestinal Epithelial Tight Junction Permeability Is Mediated by JNK Pathway Activation of Claudin-2 Gene. PLoS ONE, 2014, 9, e85345.	2.5	192
8	TNF-α Modulation of Intestinal Epithelial Tight Junction Barrier Is Regulated by ERK1/2 Activation of Elk-1. American Journal of Pathology, 2013, 183, 1871-1884.	3.8	186
9	IL-1β-Induced Increase in Intestinal Epithelial Tight Junction Permeability Is Mediated by MEKK-1 Activation of Canonical NF-κB Pathway. American Journal of Pathology, 2010, 177, 2310-2322.	3.8	168
10	TNF-α Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-α Axis Activation of the Canonical NF-κB Pathway. American Journal of Pathology, 2016, 186, 1151-1165.	3.8	151
11	Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. American Journal of Pathology, 2017, 187, 2698-2710.	3.8	150
12	IL-1Î ² and the Intestinal Epithelial Tight Junction Barrier. Frontiers in Immunology, 2021, 12, 767456.	4.8	142
13	Mechanism of IL-1β Modulation of Intestinal Epithelial Barrier Involves p38 Kinase and Activating Transcription Factor-2 Activation. Journal of Immunology, 2013, 190, 6596-6606.	0.8	114
14	Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. American Journal of Physiology - Renal Physiology, 2007, 292, G590-G598.	3.4	106
15	IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology, 2020, 159, 1375-1389.	1.3	106
16	Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G988-G997.	3.4	95
17	Mechanism of Interleukin-1β Induced-Increase in Mouse Intestinal Permeability <i>In Vivo</i> . Journal of Interferon and Cytokine Research, 2012, 32, 474-484.	1.2	84
18	Cellular and molecular mechanism of interleukin-1β modulation of Caco-2 intestinal epithelial tight junction barrier. Journal of Cellular and Molecular Medicine, 2011, 15, 970-982.	3.6	71

Rana Al-Sadi

#	Article	IF	CITATIONS
19	Lipopolysaccharide-Induced Increase in Intestinal Permeability Is Mediated by TAK-1 Activation of IKK and MLCK/MYLK Gene. American Journal of Pathology, 2019, 189, 797-812.	3.8	61
20	Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2–Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. American Journal of Pathology, 2021, 191, 872-884.	3.8	53
21	Bifidobacterium bifidum Enhances the Intestinal Epithelial Tight Junction Barrier and Protects against Intestinal Inflammation by Targeting the Toll-like Receptor-2 Pathway in an NF-κB-Independent Manner. International Journal of Molecular Sciences, 2021, 22, 8070.	4.1	44
22	MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. American Journal of Physiology - Renal Physiology, 2019, 316, G278-G290.	3.4	39
23	Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLoS ONE, 2021, 16, e0249544.	2.5	36
24	Talk about micromanaging! Role of microRNAs in intestinal barrier function. American Journal of Physiology - Renal Physiology, 2020, 319, G170-G174.	3.4	19
25	Tight Junctions and the Intestinal Barrier. , 2018, , 587-639.		18
26	Penicillin Allergy Label Increases Risk of Worse Clinical Outcomes in COVID-19. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3629-3637.e2.	3.8	6