Roberto Dovesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7095629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NVO defects in diamond: A quantum mechanical characterization through its vibrational and Electron Paramagnetic Resonance spectroscopies. Journal of Physics and Chemistry of Solids, 2022, 160, 110304.	4.0	3

The superexchange mechanism in crystalline compounds. The case of KMF₃ (M = Mn, Fe, Co,) Tj ETQq0.0 0 rgBT₃/Overlock

3	Strategies for the optimization of the structure of crystalline compounds. Journal of Computational Chemistry, 2022, 43, 184-196.	3.3	9
4	The calculated energies and charge and spin distributions of the excited GR1 state in diamond. Journal of Chemical Physics, 2022, 156, 044708.	3.0	7
5	Quantum mechanical simulation of various phases of KVF ₃ perovskite. Journal of Physics Condensed Matter, 2022, 34, 285401.	1.8	2
6	The role of spin density for understanding the superexchange mechanism in transition metal ionic compounds. The case of KMF ₃ (M = Mn, Fe, Co, Ni, Cu) perovskites. Physical Chemistry Chemical Physics, 2022, 24, 12950-12960.	2.8	2
7	Self-trapped excitons in diamond: A î" -SCF approach. Journal of Chemical Physics, 2022, 157, .	3.0	3
8	Raman activity of the longitudinal optical phonons of the LiNbO ₃ crystal: Experimental determination and quantum mechanical simulation. Journal of Raman Spectroscopy, 2022, 53, 1904-1914.	2.5	3
9	Interstitial carbon defects in silicon. A quantum mechanical characterization through the infrared and Raman spectra. Journal of Computational Chemistry, 2021, 42, 806-817.	3.3	2
10	Oxygen and vacancy defects in silicon. A quantum mechanical characterization through the IR and Raman spectra. Journal of Chemical Physics, 2021, 154, 174707.	3.0	4
11	A promising carbon-based nanosheet as a suitable Na-anode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115121.	3.5	9
12	Vibrational Analysis of Paraelectric–Ferroelectric Transition of LiNbO3: An Ab-Initio Quantum Mechanical Treatment. Symmetry, 2021, 13, 1650.	2.2	2
13			
	The NVâ^'â‹TN+ charged pair in diamond: a quantum-mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 18724-18733.	2.8	2
14	The NVâ [°] â _x N+ charged pair in diamond: a quantum-mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 18724-18733. The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF ₃ . A quantum mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 26780-26792.	2.8 2.8	2
14	The NVâ [°] â-TN+ charged pair in diamond: a quantum-mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 18724-18733.The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF ₃ . A quantum mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 26780-26792.The effect of charge and spin state on the Infrared spectra and hyperfine coupling constants of point defects in Silicon. Physica B: Condensed Matter, 2021, 626, 413499.	2.8 2.8 2.7	2 7 0
14 15 16	The NVâ [°] â. TN+ charged pair in diamond: a quantum-mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 18724-18733.The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF ₃ . A quantum mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 26780-26792.The effect of charge and spin state on the Infrared spectra and hyperfine coupling constants of point defects in Silicon. Physica B: Condensed Matter, 2021, 626, 413499.Characterization of the negatively charged NV defect through the spin density distribution and the hyperfine coupling constants. Journal of Physics and Chemistry of Solids, 2021, , 110506.	2.8 2.8 2.7 4.0	2 7 0 0
14 15 16 17	The NVâ [°] â ACN+ charged pair in diamond: a quantum-mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 18724-18733.The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF ₃ . A quantum mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 26780-26792.The effect of charge and spin state on the Infrared spectra and hyperfine coupling constants of point defects in Silicon. Physica B: Condensed Matter, 2021, 626, 413499.Characterization of the negatively charged NV defect through the spin density distribution and the hyperfine coupling constants. Journal of Physics and Chemistry of Solids, 2021, , 110506.The VN2 negatively charged defect in diamond. A quantum mechanical investigation of the EPR response. Carbon, 2020, 159, 443-450.	2.8 2.8 2.7 4.0	2 7 0 0 17

#	Article	IF	CITATIONS
19	From anisotropy of dielectric tensors to birefringence: a quantum mechanics approach. Rendiconti Lincei, 2020, 31, 835-851.	2.2	3
20	The VN defect in diamond: A quantum mechanical simulation of the vibrational spectra and EPR properties. Carbon, 2020, 170, 600-605.	10.3	5
21	Interstitial defects in diamond: A quantum mechanical simulation of their EPR constants and vibrational spectra. Journal of Chemical Physics, 2020, 153, 024119.	3.0	6
22	Microscopic Characterization of Oxygen Defects in Diamond as Models for N3 and OK1 Defects: A Comparison of Calculated and Experimental Electron Paramagnetic Resonance Data. Journal of Physical Chemistry A, 2020, 124, 8263-8272.	2.5	2
23	Predicted strong spin-phonon interactions in Li-doped diamond. Physical Chemistry Chemical Physics, 2020, 22, 20612-20617.	2.8	5
24	First principles calculations of the vibrational properties of single and dimer F-type centers in corundum crystals. Journal of Chemical Physics, 2020, 153, 134107.	3.0	5
25	The CRYSTAL code, 1976–2020 and beyond, a long story. Journal of Chemical Physics, 2020, 152, 204111.	3.0	133
26	N ₂ positively charged defects in diamond. A quantum mechanical investigation of the structural, electronic, EPR and vibrational properties. Journal of Materials Chemistry C, 2020, 8, 5239-5247.	5.5	10
27	An all-electron study of the low-lying excited states and optical constants of Al ₂ O ₃ in the range 5–80 eV. Journal of Physics Condensed Matter, 2020, 32, 085901.	1.8	8
28	The spectroscopic characterization of interstitial oxygen in bulk silicon: A quantum mechanical simulation. Journal of Chemical Physics, 2020, 152, 054502.	3.0	5
29	Substitutional carbon defects in silicon: A quantum mechanical characterization through the infrared and Raman spectra. Journal of Computational Chemistry, 2020, 41, 1638-1644.	3.3	8
30	Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Materials Today Communications, 2019, 21, 100616.	1.9	9
31	Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Physical Chemistry Chemical Physics, 2019, 21, 20939-20950.	2.8	19
32	On the Models for the Investigation of Charged Defects in Solids: The Case of the VN [–] Defect in Diamond. Journal of Physical Chemistry A, 2019, 123, 4806-4815.	2.5	4
33	Anharmonic Vibrational States of Solids from DFT Calculations. Part I: Description of the Potential Energy Surface. Journal of Chemical Theory and Computation, 2019, 15, 3755-3765.	5.3	36
34	Anharmonic Vibrational States of Solids from DFT Calculations. Part II: Implementation of the VSCF and VCI Methods. Journal of Chemical Theory and Computation, 2019, 15, 3766-3777.	5.3	37
35	Substitutional boron and nitrogen pairs in diamond. A quantum mechanical vibrational analysis. Carbon, 2019, 146, 709-716.	10.3	10
36	Calculation of the Infrared Intensity of Crystalline Systems. A Comparison of Three Strategies Based on Berry Phase, Wannier Function, and Coupled-Perturbed Kohn–Sham Methods. Journal of Physical Chemistry C, 2019, 123, 8336-8346.	3.1	24

#	Article	IF	CITATIONS
37	The characterization of the VN H defects in diamond through the infrared vibrational spectrum. A quantum mechanical investigation. Carbon, 2018, 132, 210-219.	10.3	20
38	Quantumâ€mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1360.	14.6	1,277
39	Experimental and Theoretical Infrared Signatures of REMO ₃ (RE = La, Pr, Nd, Sm, and M =) Tj ETQq1	1 0.7843	14 _. rgBT /Ove
40	Vibrational spectroscopy of hydrogens in diamond: a quantum mechanical treatment. Physical Chemistry Chemical Physics, 2018, 20, 11930-11940.	2.8	17
41	Substitutional nitrogen in diamond: A quantum mechanical investigation of the electronic and spectroscopic properties. Carbon, 2018, 134, 354-365.	10.3	42
42	Looking for \$\$sp^2\$\$ s p 2 carbon atoms in diamond: a quantum mechanical study of interacting vacancies. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	8
43	Hydrogen atoms in the diamond vacancy defect. A quantum mechanical vibrational analysis. Carbon, 2018, 129, 349-356.	10.3	18
44	Characterization of the B-Center Defect in Diamond through the Vibrational Spectrum: A Quantum-Mechanical Approach. Journal of Physical Chemistry A, 2018, 122, 594-600.	2.5	23
45	The Infrared spectrum of very large (periodic) systems: global versus fragment strategies—the case of three defects in diamond. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	10
46	Scalars, vectors and tensors evolving from slabs to bulk. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	0
47	Low energy excitations in NiO based on a direct Δ-SCF approach. Journal of Physics Condensed Matter, 2018, 30, 495901.	1.8	16
48	Hydrogen, boron and nitrogen atoms in diamond: a quantum mechanical vibrational analysis. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	16
49	Interstitial nitrogen atoms in diamond. A quantum mechanical investigation of its electronic and vibrational properties. Physical Chemistry Chemical Physics, 2018, 20, 16615-16624.	2.8	10
50	Scientific outline of Claudio Zicovich-Wilson. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	0
51	Comparison between cluster and supercell approaches: the case of defects in diamond. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	13
52	The A-center defect in diamond: quantum mechanical characterization through the infrared spectrum. Physical Chemistry Chemical Physics, 2017, 19, 14478-14485.	2.8	16
53	Nuclearâ€relaxed elastic and piezoelectric constants of materials: Computational aspects of two quantumâ€mechanical approaches. Journal of Computational Chemistry, 2017, 38, 257-264.	3.3	16
54	Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code. Journal of Chemical Theory and Computation, 2017, 13, 5019-5027.	5.3	138

#	Article	IF	CITATIONS
55	The VN ₃ H defect in diamond: a quantum-mechanical characterization. Physical Chemistry Chemical Physics, 2017, 19, 22221-22229.	2.8	20
56	On the Use of Benchmarks for Multiple Properties. Computation, 2016, 4, 20.	2.0	7
57	The V + I defects in diamond: An ab initio investigation of the electronic structure, of the Raman and IR spectra, and of their possible recombination. Journal of Chemical Physics, 2016, 145, 184701.	3.0	9
58	Infrared and Raman spectroscopic features of the self-interstitial defect in diamond from exact-exchange hybrid DFT calculations. Physical Chemistry Chemical Physics, 2016, 18, 21288-21295.	2.8	31
59	Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree–Fock/Kohn–Sham Method. Zeitschrift Fur Physikalische Chemie, 2016, 230, 719-736.	2.8	11
60	Third-Order Electric Field Response of Infinite Linear Chains Composed of Phenalenyl Radicals. Journal of Physical Chemistry C, 2016, 120, 6756-6761.	3.1	15
61	Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations. Physics and Chemistry of Minerals, 2016, 43, 137-149.	0.8	50
62	The electronic states of the neutral vacancy in diamond: a quantum mechanical approach. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	26
63	Elucidating the fundamental forces in protein crystal formation: the case of crambin. Chemical Science, 2016, 7, 1496-1507.	7.4	21
64	Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum-mechanical calculations. Physical Chemistry Chemical Physics, 2016, 18, 1961-1968.	2.8	27
65	Computation of Second Harmonic Generation for Crystalline Urea and KDP. An ab Initio Approach through the Coupled Perturbed Hartree–Fock/Kohn–Sham Scheme. Journal of Chemical Theory and Computation, 2016, 12, 107-113.	5.3	31
66	Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride. Physical Review Letters, 2015, 115, 117402.	7.8	30
67	Calculation of the dynamic first electronic hyperpolarizability <i>β</i> (â^' <i>ω σ</i> ; <i>ω</i> 1,) Tj ET Chemical Physics, 2015, 143, 244102.	Qq1 1 0. 3.0	784314 rgB 19
68	Piezo-optic tensor of crystals from quantum-mechanical calculations. Journal of Chemical Physics, 2015, 143, 144504.	3.0	23
69	Quantum-mechanical simulation of the IR reflectance spectrum of Mn3Al2Si3O12 spessartine. , 2015, , .		0
70	On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime. Journal of Chemical Physics, 2015, 142, 044114.	3.0	72
71	In silico infrared and Raman spectroscopy under pressure: The case of CaSnO3 perovskite. Journal of Chemical Physics, 2015, 142, 014505.	3.0	28
72	Assessing thermochemical properties of materials through ab initio quantum-mechanical methods: the case of α-Al ₂ O ₃ . Physical Chemistry Chemical Physics, 2015, 17, 11670-11677.	2.8	51

#	Article	IF	CITATIONS
73	Structural and elastic anisotropy of crystals at high pressures and temperatures from quantum mechanical methods: The case of Mg2SiO4 forsterite. Journal of Chemical Physics, 2015, 142, 204502.	3.0	36
74	Structure and Vibrational Spectraâ [*] †. , 2015, , .		0
75	Pressure effect on elastic anisotropy of crystals from <i>ab initio</i> simulations: The case of silicate garnets. Journal of Chemical Physics, 2014, 140, 234703.	3.0	15
76	The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. Journal of Chemical Physics, 2014, 140, 164509.	3.0	131
77	High pressure elastic properties of minerals from <i>ab initio</i> simulations: The case of pyrope, grossular and andradite silicate garnets. Journal of Chemical Physics, 2014, 140, 124703.	3.0	66
78	C <scp>RYSTAL14</scp> : A program for the <i>ab initio</i> investigation of crystalline solids. International Journal of Quantum Chemistry, 2014, 114, 1287-1317.	2.0	1,151
79	Elastic properties of six silicate garnet end members from accurate ab initio simulations. Physics and Chemistry of Minerals, 2014, 41, 151-160.	0.8	100
80	Large-Scale B3LYP Simulations of Ibuprofen Adsorbed in MCM-41 Mesoporous Silica as Drug Delivery System. Journal of Physical Chemistry C, 2014, 118, 26737-26749.	3.1	52
81	On the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field <i>ab initio</i> calculations. Journal of Chemical Physics, 2014, 141, 104108.	3.0	21
82	Exploitation of symmetry in periodic Self-Consistent-Field ab initio calculations: application to large three-dimensional compounds. Science China Chemistry, 2014, 57, 1418-1426.	8.2	4
83	Elasticity of grossular–andradite solid solution: an ab initio investigation. Physical Chemistry Chemical Physics, 2014, 16, 15331.	2.8	16
84	Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study. Physical Chemistry Chemical Physics, 2014, 16, 13390-13401.	2.8	30
85	Raman spectrum of NaAlSi ₂ O ₆ jadeite. A quantum mechanical simulation. Journal of Raman Spectroscopy, 2014, 45, 703-709.	2.5	41
86	The Raman spectrum of grossular garnet: a quantum mechanical simulation of wavenumbers and intensities. Journal of Raman Spectroscopy, 2014, 45, 710-715.	2.5	10
87	Photoelasticity of crystals from theoretical simulations. Physical Review B, 2013, 88, .	3.2	41
88	Anomalous birefringence in andradite–grossular solid solutions: a quantum-mechanical approach. Physics and Chemistry of Minerals, 2013, 40, 781-788.	0.8	9
89	Structure and Vibrational Spectra. , 2013, , 971-987.		1
90	Zinc oxide nanotubes: An <i>ab initio</i> investigation of their structural, vibrational, elastic, and dielectric properties. Journal of Chemical Physics, 2013, 138, 214706.	3.0	29

#	Article	IF	CITATIONS
91	The vibration properties of the (<i>n</i> ,0) boron nitride nanotubes from <i>ab initio</i> quantum chemical simulations. Journal of Chemical Physics, 2013, 138, 054906.	3.0	44
92	On the use of symmetry in configurational analysis for the simulation of disordered solids. Journal of Physics Condensed Matter, 2013, 25, 105401.	1.8	34
93	Symmetry and random sampling of symmetry independent configurations for the simulation of disordered solids. Journal of Physics Condensed Matter, 2013, 25, 355401.	1.8	24
94	<i>Ab initio</i> analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. Journal of Chemical Physics, 2013, 139, 164101.	3.0	167
95	First-principles study of the mechanisms of the pressure-induced dielectric anomalies in ferroelectric perovskites. Phase Transitions, 2013, 86, 1069-1084.	1.3	57
96	Accurate dynamical structure factors from <i>ab initio</i> lattice dynamics: The case of crystalline silicon. Journal of Computational Chemistry, 2013, 34, 346-354.	3.3	61
97	<i>Ab Initio</i> Periodic Simulation of the Spectroscopic and Optical Properties of Novel Porous Graphene Phases. Journal of Physical Chemistry C, 2013, 117, 2222-2229.	3.1	33
98	Use of <i>ab initio</i> methods for the interpretation of the experimental IR reflectance spectra of crystalline compounds. Journal of Computational Chemistry, 2013, 34, 1476-1485.	3.3	12
99	The electronic structure of MgO nanotubes. An ab initio quantum mechanical investigation. Physical Chemistry Chemical Physics, 2013, 15, 13296.	2.8	10
100	The infrared vibrational spectrum of andradite-grossular solid solutions: A quantum mechanical simulation. American Mineralogist, 2013, 98, 966-976.	1.9	13
101	Beryllium Oxide Nanotubes and their Connection to the Flat Monolayer. Journal of Physical Chemistry C, 2013, 117, 12864-12872.	3.1	60
102	Examining the Accuracy of Density Functional Theory for Predicting the Thermodynamics of Water Incorporation into Minerals: The Hydrates of Calcium Carbonate. Journal of Physical Chemistry C, 2013, 117, 17814-17823.	3.1	36
103	Raman Spectrum of Pyrope Garnet. A Quantum Mechanical Simulation of Frequencies, Intensities, and Isotope Shifts. Journal of Physical Chemistry A, 2013, 117, 11464-11471.	2.5	25
104	The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation. Journal of Chemical Physics, 2013, 138, 014201.	3.0	92
105	Comment on "Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method―[J. Chem. Phys. 137, 204113 (2012)]. Journal of Chemical Physics, 2013, 139, 167101.	3.0	28
106	<i>Ab initio</i> analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. Journal of Chemical Physics, 2013, 139, 164102.	3.0	145
107	On the use of symmetry in SCF calculations. The case of fullerenes and nanotubes. AIP Conference Proceedings, 2012, , .	0.4	9
108	Vibrational contribution to static and dynamic (Hyper)polarizabilities of zigzag BN nanotubes calculated by the finite field nuclear relaxation method. International Journal of Quantum Chemistry, 2012, 112, 2160-2170.	2.0	16

#	Article	IF	CITATIONS
109	Electronic structure, dielectric properties and infrared vibrational spectrum of fayalite: An ab initio simulation with an allâ€electron Gaussian basis set and the B3LYP functional. International Journal of Quantum Chemistry, 2012, 112, 2098-2108.	2.0	20
110	A new massively parallel version of CRYSTAL for large systems on high performance computing architectures. Journal of Computational Chemistry, 2012, 33, 2276-2284.	3.3	43
111	The infrared spectrum of ortho-enstatite from reflectance experiments and first-principle simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 147-154.	4.4	22
112	First-principles optical response of semiconductors and oxide materials. Physical Review B, 2011, 83, .	3.2	51
113	Electron Densities and Related Properties from the ab-initio Simulation of Crystalline Solids. , 2011, , 79-132.		3
114	Physico-Chemical Features of Aluminum Hydroxides As Modeled with the Hybrid B3LYP Functional and Localized Basis Functions. Journal of Physical Chemistry C, 2011, 115, 13107-13134.	3.1	50
115	The IR vibrational properties of six members of the garnet family: A quantum mechanical ab initio study. American Mineralogist, 2011, 96, 1787-1798.	1.9	28
116	The First and Second Static Electronic Hyperpolarizabilities of Zigzag Boron Nitride Nanotubes. An ab Initio Approach through the Coupled Perturbed Kohn–Sham Scheme. Journal of Physical Chemistry A, 2011, 115, 12631-12637.	2.5	31
117	High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Physics and Chemistry of Minerals, 2011, 38, Th84faffared spectrum of spessartine <mml:math <="" altimg="si69.gif" overflow="scroll" td=""><td>0.8</td><td>52</td></mml:math>	0.8	52
118	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.6	19
119	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevie. Badorimance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg ₂ SiO ₄ . Journal of Computational Chemistry, 2011, 32, 1775-1784.	3.3	112
120	On the use of symmetry in the <i>ab initio</i> quantum mechanical simulation of nanotubes and related materials. Journal of Computational Chemistry, 2010, 31, 855-862.	3.3	48
121	<i>Ab initio</i> periodic study of the conformational behavior of glycine helical homopeptides. Journal of Computational Chemistry, 2010, 31, 1777-1784.	3.3	11
122	Ab initio quantumâ€mechanical prediction of the IR and Raman spectra of Ca ₃ Cr ₂ Si ₃ O ₁₂ Uvarovite garnet. International Journal of Quantum Chemistry, 2010, 110, 416-421.	2.0	14
123	On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. International Journal of Quantum Chemistry, 2010, 110, 406-415.	2.0	121
124	Magnetic interactions and electronic structure of uvarovite and andradite garnets. An ab initio allâ€electron simulation with the CRYSTALO6 program. International Journal of Quantum Chemistry, 2010, 110, 338-351.	2.0	14
125	Performance of 12 DFT functionals in the study of crystal systems: Al ₂ SiO ₅ orthosilicates and Al hydroxides as a case study. International Journal of Quantum Chemistry, 2010, 110, 2260-2273.	2.0	42
126	Magnetic interactions in Ca ₃ Fe ₂ Ge ₃ O ₁₂ and Ca ₃ Cr ₂ Ge ₃ O ₁₂ garnets. An ab initio allâ€electron quantum mechanical simulation. International Journal of Quantum Chemistry, 2010, 110, 2192-2201.	2.0	6

#	Article	IF	CITATIONS
127	Structure and energetics of imogolite: a quantum mechanical ab initio study with B3LYP hybrid functional. Journal of Materials Chemistry, 2010, 20, 10417.	6.7	41
128	Search and Characterization of Transition State Structures in Crystalline Systems Using Valence Coordinates. Journal of Chemical Theory and Computation, 2010, 6, 1341-1350.	5.3	19
129	The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree–Fock and density functional theory results obtained with the periodic coupled perturbed Hartree–Fock/Kohn–Sham scheme. Journal of Chemical Physics, 2009, 131, 214704.	3.0	43
130	Ab initio modeling of layered materials with the CRYSTAL code: an overview. Zeitschrift Für Kristallographie, 2009, 224, 241-250.	1.1	8
131	Calculation of the static electronic second hyperpolarizability or χ(3) tensor of three-dimensional periodic compounds with a local basis set. Journal of Chemical Physics, 2009, 131, 184105.	3.0	18
132	Periodic density functional theory and local-MP2 study of the librational modes of Ice XI. Journal of Chemical Physics, 2009, 130, 074505.	3.0	39
133	<i>Ab initio</i> quantumâ€mechanical simulation of the Raman spectrum of grossular. Journal of Raman Spectroscopy, 2009, 40, 416-418.	2.5	19
134	Ab initio quantum mechanical study of \hat{I}^3 -AlOOH boehmite: structure and vibrational spectrum. Physics and Chemistry of Minerals, 2009, 36, 47-59.	0.8	54
135	Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine. Physics and Chemistry of Minerals, 2009, 36, 415-420.	0.8	19
136	Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Computer Physics Communications, 2009, 180, 1753-1759.	7.5	178
137	Single-layered chrysotile nanotubes: A quantum mechanical <i>ab initio</i> simulation. Journal of Chemical Physics, 2009, 131, 204701.	3.0	26
138	Structure and Stability of the Al(OH) ₃ Polymorphs Doyleite and Nordstrandite: A Quantum Mechanical ab Initio Study with the CRYSTAL06 Code. Journal of Physical Chemistry C, 2009, 113, 6785-6791.	3.1	19
139	Quantum-Mechanical ab Initio Simulation of the Raman and IR Spectra of Fe ₃ Al ₂ Si ₃ O ₁₂ Almandine. Journal of Physical Chemistry A, 2009, 113, 11289-11294.	2.5	28
140	Andraditeâ^'Uvarovite Solid Solutions. An ab Initio All-Electron Quantum Mechanical Simulation with the CRYSTAL06 Code. Journal of Physical Chemistry C, 2009, 113, 14507-14511.	3.1	14
141	The calculation of static polarizabilities of 1â€3D periodic compounds. the implementation in the crystal code. Journal of Computational Chemistry, 2008, 29, 1450-1459.	3.3	253
142	<i>Ab initio</i> simulation of the IR spectra of pyrope, grossular, and andradite. Journal of Computational Chemistry, 2008, 29, 2268-2278.	3.3	84
143	Realistic Models of Hydroxylated Amorphous Silica Surfaces and MCMâ€41 Mesoporous Material Simulated by Largeâ€scale Periodic B3LYP Calculations. Advanced Materials, 2008, 20, 4579-4583.	21.0	199
144	Structure and stability of aluminium trihydroxides bayerite and gibbsite: A quantum mechanical ab initio study with the Crystal06 code. Chemical Physics Letters, 2008, 465, 220-225.	2.6	46

#	Article	IF	CITATIONS
145	B3LYP Simulation of the Full Vibrational Spectrum of 45S5 Bioactive Silicate Glass Compared to v-Silica. Chemistry of Materials, 2008, 20, 5610-5621.	6.7	42
146	<i>Ab-initio</i> quantum mechanical study of akdalaite (5Al ₂ O ₃ ·) Tj ETQq0 0 0 rgB 012013.	T /Overlock 0.4	10 Tf 50 707 12
147	Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the <scp>CRYSTAL</scp> code Journal of Chemical Physics, 2008, 129, 244110.	3.0	199
148	Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects. Journal of Chemical Physics, 2008, 128, 014110.	3.0	186
149	Coupled perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds. Journal of Physics: Conference Series, 2008, 117, 012016.	0.4	63
150	Comparison of the polarizability of periodic systems computed by using the length and velocity operators. Journal of Physics: Conference Series, 2008, 117, 012023.	0.4	14
151	Coupled Perturbed Hartree-Fock Calculation of the Static Polarizability for Periodic Systems: Implementation in the CRYSTAL Code. AIP Conference Proceedings, 2007, , .	0.4	13
152	The Vibrational Spectrum of α-AlOOH Diaspore:  An Ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2007, 111, 9337-9346.	2.6	66
153	Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite. Theoretical Chemistry Accounts, 2007, 117, 991-1000.	1.4	108
154	Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3). International Journal of Quantum Chemistry, 2006, 106, 1703-1714.	2.0	71
155	Vibrational Spectrum of Katoite Ca3Al2[(OH)4]3:Â A Periodic ab Initio Study. Journal of Physical Chemistry B, 2006, 110, 692-701.	2.6	53
156	Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 2006, 8, 364-371.	2.6	187
157	The anisotropy of dielectric properties in the orthorhombic and hexagonal structures of Anhydrite – anab initio and hybrid DFT study. Physica Status Solidi (B): Basic Research, 2006, 243, 2935-2951.	1.5	7
158	The vibrational frequencies of forsterite Mg2SiO4: an all-electron ab initio study with the CRYSTAL code. Physics and Chemistry of Minerals, 2006, 33, 383-393.	0.8	69
159	Quantum-mechanical calculation of the vibrational spectrum of beryl (Al4Be6Si12O36) at the Γ point. Physics and Chemistry of Minerals, 2006, 33, 519-532.	0.8	24
160	Analytical Hartree–Fock gradients with respect to the cell parameter: systems periodic in one and two dimensions. Theoretical Chemistry Accounts, 2006, 115, 354-360.	1.4	47
161	Ab InitioStudy of the Vibrational Spectrum and Related Properties of Crystalline Compounds; the Case of CaCO3Calcite. Zeitschrift Fur Physikalische Chemie, 2006, 220, 893-912.	2.8	168
162	Phonon vibrational frequencies and elastic properties of solid SrFCl. An ab initio study. European Physical Journal B, 2005, 43, 453-461.	1.5	26

#	Article	IF	CITATIONS
163	Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab initio Study with the CRYSTAL Code ChemInform, 2005, 36, no.	0.0	2
164	Quantum mechanical calculation of the OH vibrational frequency in crystalline solids. Molecular Physics, 2005, 103, 2549-2558.	1.7	93
165	Local-MP2 electron correlation method for nonconducting crystals. Journal of Chemical Physics, 2005, 122, 094113.	3.0	182
166	Raman and infrared vibrational frequencies and elastic properties of solid BaFCl calculated with various Hamiltonians: anab initiostudy. Journal of Physics Condensed Matter, 2005, 17, 535-548.	1.8	14
167	Vibration Frequencies of Ca3Fe2Si3O12Andradite:Â An ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2005, 109, 18522-18527.	2.6	46
168	CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	824
169	Ab Initio Quantum Simulation in Solid State Chemistry. Reviews in Computational Chemistry, 2005, , 1-125.	1.5	120
170	Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2005, 109, 6146-6152.	2.6	142
171	Infrared Spectra of Hydrogen-Bonded Ionic Crystals: Ab Initio Study of Mg(OH)2and β-Be(OH)2. Journal of Physical Chemistry B, 2004, 108, 13632-13637.	2.6	68
172	The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation. Physics and Chemistry of Minerals, 2004, 31, 559-564.	0.8	182
173	Analytical Hartree?Fock gradients with respect to the cell parameter for systems periodic in three dimensions. Theoretical Chemistry Accounts, 2004, 112, 394-402.	1.4	102
174	Periodic approach to the electronic structure and magnetic coupling in KCuF3, K2CuF4, and Sr2CuO2Cl2 low-dimensional magnetic systems. International Journal of Quantum Chemistry, 2004, 99, 805-823.	2.0	36
175	The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of Computational Chemistry, 2004, 25, 888-897.	3.3	796
176	Calculation of the vibration frequencies of ?-quartz: The effect of Hamiltonian and basis set. Journal of Computational Chemistry, 2004, 25, 1873-1881.	3.3	451
177	The structural, electronic and vibrational properties of LiOH and NaOH: an ab initio study. Chemical Physics Letters, 2004, 387, 453-459.	2.6	54
178	Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chemical Physics Letters, 2004, 396, 308-315.	2.6	142
179	The Performance of Hybrid Density Functionals in Solid State Chemistry. Structure and Bonding, 2004, , 171-232.	1.0	171
180	Implementation of the finite field perturbation method in the CRYSTAL program for calculating the dielectric constant of periodic systems. Journal of Computational Chemistry, 2003, 24, 1305-1312.	3.3	52

#	Article	IF	CITATIONS
181	Hydrogarnet defect in chabazite and sodalite zeolites: A periodic Hartree–Fock and B3-LYP study. Journal of Chemical Physics, 2002, 117, 5337-5346.	3.0	44
182	Characterization of the electronic structure of crystalline compounds through their localized Wannier functions. Journal of Chemical Physics, 2002, 116, 1120-1127.	3.0	87
183	Polarization properties of ZnO and BeO: Anab initiostudy through the Berry phase and Wannier functions approaches. Physical Review B, 2001, 65, .	3.2	213
184	Hartree–Fock geometry optimisation of periodic systems with the Crystal code. Chemical Physics Letters, 2001, 348, 131-138.	2.6	294
185	A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations. Journal of Chemical Physics, 2001, 115, 9708-9719.	3.0	191
186	Fcenter in LiF: A quantum mechanicalab initioinvestigation of the hyperfine interaction between the unpaired electron at the vacancy and its first seven neighbors. Physical Review B, 2001, 63, .	3.2	42
187	Well localized crystalline orbitals obtained from Bloch functions: The case ofKNbO3. Physical Review B, 2001, 64, .	3.2	50
188	CRYSTAL and EMBED, two computational tools for the ab initio study of electronic properties of crystals. International Journal of Quantum Chemistry, 2000, 77, 1032-1048.	2.0	46
189	Detailed ab-initio analysis of the magnetic coupling in CuF2. Chemical Physics Letters, 2000, 319, 625-630.	2.6	37
190	Ab initiostudy ofMF2(M=Mn,Fe,Co,Ni)rutile-type compounds using the periodic unrestricted Hartree-Fock approach. Physical Review B, 2000, 62, 7816-7823.	3.2	46
191	Ab initio study of the cation vacancy at the surface and in bulk MgO. Physical Chemistry Chemical Physics, 2000, 2, 3893-3901.	2.8	37
192	Magnetic coupling in the weak ferromagnetCuF2. Physical Review B, 1999, 59, 1016-1023.	3.2	36
193	On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. I. The construction of the symmetrized orbitals. , 1998, 67, 299-309.		53
194	On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. II. Implementation of the self-consistent-field scheme and examples. , 1998, 67, 311-320.		27
195	Lithium trapped-hole centre in magnesium oxide. An ab initio supercell study. Journal of Physics and Chemistry of Solids, 1998, 59, 7-12.	4.0	25
196	Transition metal materials: a first principles approach to the electronic structure of the insulating phase. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 75-88.	3.4	15
197	Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case ofKNbO3. Physical Review B, 1997, 56, 10105-10114.	3.2	151
198	A quantum mechanical investigation of the electronic and magnetic properties of perovskite. Journal of Physics Condensed Matter, 1997, 9, 489-498.	1.8	31

#	Article	IF	CITATIONS
199	Structural, electronic and magnetic properties of KMF3(M=Mn, Fe, Co, Ni). Faraday Discussions, 1997, 106, 173-187.	3.2	64
200	Periodic unrestricted Hartree-Fock study of corundumlikeTi2O3andV2O3. Physical Review B, 1997, 55, 16122-16131.	3.2	44
201	On the structural, electronic and magnetic properties of spinel. Journal of Physics Condensed Matter, 1997, 9, 10715-10724.	1.8	27
202	Anab InitioHartreeâ ``Fock Study of the Cubic and Tetragonal Phases of Bulk Tungsten Trioxide. Journal of the American Chemical Society, 1996, 118, 12174-12182.	13.7	120
203	Electronic, magnetic and crystal structure of Cr 2 O 3 by theoretical methods. Journal of Physics and Chemistry of Solids, 1996, 57, 1735-1741.	4.0	106
204	Electronic and magnetic structure ofKNiF3perovskite. Physical Review B, 1995, 52, 2381-2389.	3.2	79
205	Magnetic interactions and the cooperative Jahn-Teller effect inKCuF3. Physical Review B, 1995, 52, 10150-10159.	3.2	83
206	Superexchange interaction in K2NiF4: an ab initio Hartree-Fock study. Journal of Physics Condensed Matter, 1995, 7, 7997-8007.	1.8	26
207	Ab initiostudy of antiferromagnetic rutile-typeFeF2. Physical Review B, 1995, 52, 2422-2427.	3.2	53
208	Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3(hematite). Physical Review B, 1995, 51, 7441-7450.	3.2	273
209	Mechanical and molecular properties of ice VIII from crystalâ€orbital ab initio calculations. Journal of Chemical Physics, 1994, 100, 2128-2138.	3.0	61
210	Quantum-mechanical calculation of the solid-state equilibrium MgO+α-Al2O3⇄MgAl2O4(spinel) versus pressure. Physical Review B, 1994, 49, 14179-14187.	3.2	169
211	Adsorption energies of NH3 and NH+4 in zeolites corrected for the longâ€range electrostatic potential of the crystal. Journal of Chemical Physics, 1994, 101, 5865-5874.	3.0	65
212	A quantum-mechanical study of the relative stability under pressure of MgSiO3-ilmenite, MgSiO3-perovskite, and MgO-periclase+SiO2-stishovite assemblage. Physics and Chemistry of Minerals, 1994, 21, 285.	0.8	22
213	On the electrostatic potential in linear periodic polymers. Computer Physics Communications, 1994, 84, 156-172.	7.5	47
214	Convergence properties of the supercell approach in the study of local defects in solids. Phase Transitions, 1994, 52, 151-167.	1.3	13
215	A quantum mechanical study of the perovskite structure type of MgSiO3. Physics and Chemistry of Minerals, 1993, 20, 407.	0.8	48
216	Quantum Mechnical Hartreeâ€Fock Study of the Elastic Properties of Li ₂ S and Na ₂ S. Physica Status Solidi (B): Basic Research, 1993, 177, 157-163.	1.5	82

#	Article	IF	CITATIONS
217	<i>Ab initio</i> Hartree-Fock calculations of CaO, VO, MnO and NiO. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 653-666.	0.6	95
218	On the electrostatic potential in crystalline systems where the charge density is expanded in Gaussian functions. Molecular Physics, 1992, 77, 629-665.	1.7	167
219	Near-Hartree-Fock wave functions for solids: The case of crystalline silicon. International Journal of Quantum Chemistry, 1992, 42, 5-33.	2.0	44
220	A periodic ab initio extended basis set study of Î \pm -Al2O3. Molecular Physics, 1991, 72, 267-277.	1.7	82
221	Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea. Journal of Chemical Physics, 1990, 92, 7402-7411.	3.0	220
222	Treatment of the exchange interactions in Hartree-Fock LCAO calculations of periodic systems. The Journal of Physical Chemistry, 1988, 92, 909-913.	2.9	60
223	Hartree–Fock study of polysulphur nitride II. Threeâ€dimensional structures and interchain interactions. Journal of Chemical Physics, 1988, 88, 3196-3203.	3.0	8
224	Correlation correction to the Hartree-Fock total energy of solids. II. Physica Scripta, 1988, 38, 194-198.	2.5	31
225	Hartree-Fock Ab Initio Treatment of Crystalline Systems. Lecture Notes in Quantum Chemistry II, 1988, , .	0.3	577
226	Correlation correction to the Hartree-Fock total energy of solids. Physical Review B, 1987, 36, 891-897.	3.2	75
227	The electronic structure of αâ€quartz: A periodic Hartree–Fock calculation. Journal of Chemical Physics, 1987, 86, 6967-6971.	3.0	83
228	On the role of symmetry in the ab initio hartree-fock linear-combination-of-atomic-orbitals treatment of periodic systems. International Journal of Quantum Chemistry, 1986, 29, 1755-1774.	2.0	47
229	Electronic structure and stability of different crystal phases of magnesium oxide. Physical Review B, 1986, 33, 1308-1316.	3.2	240
230	Hartree–Fock study of polysulphurâ€nitride. I. The isolated infinite chain. Journal of Chemical Physics, 1984, 81, 2839-2844.	3.0	18
231	A New Technique for the Evaluation of Densities of States in ab initio Calculations of Periodic Systems. Physica Status Solidi (B): Basic Research, 1984, 122, 211-220.	1.5	8
232	Comparison of different approaches to the study of local defects in crystals. I. Theoretical considerations and computational schemes. Physica Status Solidi (B): Basic Research, 1983, 116, 249-259.	1.5	26
233	Comparison of different approaches to the study of local defects in crystals. II. Substitutional impurities in the tightâ€binding approximation. Physica Status Solidi (B): Basic Research, 1983, 116, 547-556. 	1.5	10
234	Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems. Physical Review B, 1983, 28, 5781-5792.	3.2	127

#	Article	IF	CITATIONS
235	On the core expansion of metallic beryllium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1982, 45, 601-606.	0.6	12
236	Exact–exchange Hartree–Fock calculations for periodic systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 44, 419-425.	0.6	10
237	Exact-exchange Hartree–Fock calculations for periodic systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 44, 413-418.	0.6	14
238	Exact-exchange Hartree-Fock calculations for periodic systems. I. Illustration of the method. International Journal of Quantum Chemistry, 1980, 17, 501-516.	2.0	214
239	Exact-exchange Hartree-Fock calculations for periodic systems. II. Results for graphite and hexagonal boron nitride. International Journal of Quantum Chemistry, 1980, 17, 517-529.	2.0	93