
Roberto Dovesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7095629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantumâ€mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1360.	14.6	1,277
2	C <scp>RYSTAL14</scp> : A program for the <i>ab initio</i> investigation of crystalline solids. International Journal of Quantum Chemistry, 2014, 114, 1287-1317.	2.0	1,151
3	CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	824
4	The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of Computational Chemistry, 2004, 25, 888-897.	3.3	796
5	Hartree-Fock Ab Initio Treatment of Crystalline Systems. Lecture Notes in Quantum Chemistry II, 1988, , .	0.3	577
6	Calculation of the vibration frequencies of ?-quartz: The effect of Hamiltonian and basis set. Journal of Computational Chemistry, 2004, 25, 1873-1881.	3.3	451
7	Hartree–Fock geometry optimisation of periodic systems with the Crystal code. Chemical Physics Letters, 2001, 348, 131-138.	2.6	294
8	Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3(hematite). Physical Review B, 1995, 51, 7441-7450.	3.2	273
9	The calculation of static polarizabilities of 1â€3D periodic compounds. the implementation in the crystal code. Journal of Computational Chemistry, 2008, 29, 1450-1459.	3.3	253
10	Electronic structure and stability of different crystal phases of magnesium oxide. Physical Review B, 1986, 33, 1308-1316.	3.2	240
11	Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea. Journal of Chemical Physics, 1990, 92, 7402-7411.	3.0	220
12	Exact-exchange Hartree-Fock calculations for periodic systems. I. Illustration of the method. International Journal of Quantum Chemistry, 1980, 17, 501-516.	2.0	214
13	Polarization properties of ZnO and BeO: $\hat{a} \in f$ Anab initiostudy through the Berry phase and Wannier functions approaches. Physical Review B, 2001, 65, .	3.2	213
14	Realistic Models of Hydroxylated Amorphous Silica Surfaces and MCMâ€41 Mesoporous Material Simulated by Largeâ€scale Periodic B3LYP Calculations. Advanced Materials, 2008, 20, 4579-4583.	21.0	199
15	Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the <scp>CRYSTAL</scp> code Journal of Chemical Physics, 2008, 129, 244110.	3.0	199
16	A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations. Journal of Chemical Physics, 2001, 115, 9708-9719.	3.0	191
17	Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 2006, 8, 364-371.	2.6	187
18	Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects. Journal of Chemical Physics, 2008, 128, 014110.	3.0	186

#	Article	IF	CITATIONS
19	The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation. Physics and Chemistry of Minerals, 2004, 31, 559-564.	0.8	182
20	Local-MP2 electron correlation method for nonconducting crystals. Journal of Chemical Physics, 2005, 122, 094113.	3.0	182
21	Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Computer Physics Communications, 2009, 180, 1753-1759.	7.5	178
22	The Performance of Hybrid Density Functionals in Solid State Chemistry. Structure and Bonding, 2004, , 171-232.	1.0	171
23	Quantum-mechanical calculation of the solid-state equilibrium MgO+α-Al2O3⇄MgAl2O4(spinel) versus pressure. Physical Review B, 1994, 49, 14179-14187.	3.2	169
24	Ab InitioStudy of the Vibrational Spectrum and Related Properties of Crystalline Compounds; the Case of CaCO3Calcite. Zeitschrift Fur Physikalische Chemie, 2006, 220, 893-912.	2.8	168
25	On the electrostatic potential in crystalline systems where the charge density is expanded in Gaussian functions. Molecular Physics, 1992, 77, 629-665.	1.7	167
26	<i>Ab initio</i> analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. Journal of Chemical Physics, 2013, 139, 164101.	3.0	167
27	Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case ofKNbO3. Physical Review B, 1997, 56, 10105-10114.	3.2	151
28	<i>Ab initio</i> analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. Journal of Chemical Physics, 2013, 139, 164102.	3.0	145
29	Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chemical Physics Letters, 2004, 396, 308-315.	2.6	142
30	Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2005, 109, 6146-6152.	2.6	142
31	Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code. Journal of Chemical Theory and Computation, 2017, 13, 5019-5027.	5.3	138
32	The CRYSTAL code, 1976–2020 and beyond, a long story. Journal of Chemical Physics, 2020, 152, 204111.	3.0	133
33	The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. Journal of Chemical Physics, 2014, 140, 164509.	3.0	131
34	Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems. Physical Review B, 1983, 28, 5781-5792.	3.2	127
35	On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. International Journal of Quantum Chemistry, 2010, 110, 406-415.	2.0	121
36	Anab InitioHartreeâ^'Fock Study of the Cubic and Tetragonal Phases of Bulk Tungsten Trioxide. Journal of the American Chemical Society, 1996, 118, 12174-12182.	13.7	120

#	Article	IF	CITATIONS
37	Ab Initio Quantum Simulation in Solid State Chemistry. Reviews in Computational Chemistry, 2005, , 1-125.	1.5	120
38	Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBEO, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg ₂ SiO ₄ . Journal of Computational Chemistry, 2011, 32, 1775-1784.	3.3	112
39	Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite. Theoretical Chemistry Accounts, 2007, 117, 991-1000.	1.4	108
40	Electronic, magnetic and crystal structure of Cr 2 O 3 by theoretical methods. Journal of Physics and Chemistry of Solids, 1996, 57, 1735-1741.	4.0	106
41	Analytical Hartree?Fock gradients with respect to the cell parameter for systems periodic in three dimensions. Theoretical Chemistry Accounts, 2004, 112, 394-402.	1.4	102
42	Elastic properties of six silicate garnet end members from accurate ab initio simulations. Physics and Chemistry of Minerals, 2014, 41, 151-160.	0.8	100
43	<i>Ab initio</i> Hartree-Fock calculations of CaO, VO, MnO and NiO. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 653-666.	0.6	95
44	Exact-exchange Hartree-Fock calculations for periodic systems. II. Results for graphite and hexagonal boron nitride. International Journal of Quantum Chemistry, 1980, 17, 517-529.	2.0	93
45	Quantum mechanical calculation of the OH vibrational frequency in crystalline solids. Molecular Physics, 2005, 103, 2549-2558.	1.7	93
46	The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation. Journal of Chemical Physics, 2013, 138, 014201.	3.0	92
47	Characterization of the electronic structure of crystalline compounds through their localized Wannier functions. Journal of Chemical Physics, 2002, 116, 1120-1127.	3.0	87
48	<i>Ab initio</i> simulation of the IR spectra of pyrope, grossular, and andradite. Journal of Computational Chemistry, 2008, 29, 2268-2278.	3.3	84
49	The electronic structure of αâ€quartz: A periodic Hartree–Fock calculation. Journal of Chemical Physics, 1987, 86, 6967-6971.	3.0	83
50	Magnetic interactions and the cooperative Jahn-Teller effect inKCuF3. Physical Review B, 1995, 52, 10150-10159.	3.2	83
51	A periodic ab initio extended basis set study of α-Al2O3. Molecular Physics, 1991, 72, 267-277.	1.7	82
52	Quantum Mechnical Hartreeâ€Fock Study of the Elastic Properties of Li ₂ S and Na ₂ S. Physica Status Solidi (B): Basic Research, 1993, 177, 157-163.	1.5	82
53	Electronic and magnetic structure ofKNiF3perovskite. Physical Review B, 1995, 52, 2381-2389.	3.2	79
54	Correlation correction to the Hartree-Fock total energy of solids. Physical Review B, 1987, 36, 891-897.	3.2	75

#	Article	IF	CITATIONS
55	On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime. Journal of Chemical Physics, 2015, 142, 044114.	3.0	72
56	Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3). International Journal of Quantum Chemistry, 2006, 106, 1703-1714.	2.0	71
57	The vibrational frequencies of forsterite Mg2SiO4: an all-electron ab initio study with the CRYSTAL code. Physics and Chemistry of Minerals, 2006, 33, 383-393.	0.8	69
58	Infrared Spectra of Hydrogen-Bonded Ionic Crystals: Ab Initio Study of Mg(OH)2and β-Be(OH)2. Journal of Physical Chemistry B, 2004, 108, 13632-13637.	2.6	68
59	The Vibrational Spectrum of α-AlOOH Diaspore:  An Ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2007, 111, 9337-9346.	2.6	66
60	High pressure elastic properties of minerals from <i>ab initio</i> simulations: The case of pyrope, grossular and andradite silicate garnets. Journal of Chemical Physics, 2014, 140, 124703.	3.0	66
61	Adsorption energies of NH3 and NH+4 in zeolites corrected for the longâ€range electrostatic potential of the crystal. Journal of Chemical Physics, 1994, 101, 5865-5874.	3.0	65
62	Structural, electronic and magnetic properties of KMF3(M=Mn, Fe, Co, Ni). Faraday Discussions, 1997, 106, 173-187.	3.2	64
63	Coupled perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds. Journal of Physics: Conference Series, 2008, 117, 012016.	0.4	63
64	Mechanical and molecular properties of ice VIII from crystalâ€orbital ab initio calculations. Journal of Chemical Physics, 1994, 100, 2128-2138.	3.0	61
65	Accurate dynamical structure factors from <i>ab initio</i> lattice dynamics: The case of crystalline silicon. Journal of Computational Chemistry, 2013, 34, 346-354.	3.3	61
66	Treatment of the exchange interactions in Hartree-Fock LCAO calculations of periodic systems. The Journal of Physical Chemistry, 1988, 92, 909-913.	2.9	60
67	Beryllium Oxide Nanotubes and their Connection to the Flat Monolayer. Journal of Physical Chemistry C, 2013, 117, 12864-12872.	3.1	60
68	First-principles study of the mechanisms of the pressure-induced dielectric anomalies in ferroelectric perovskites. Phase Transitions, 2013, 86, 1069-1084.	1.3	57
69	The structural, electronic and vibrational properties of LiOH and NaOH: an ab initio study. Chemical Physics Letters, 2004, 387, 453-459.	2.6	54
70	Ab initio quantum mechanical study of γ-AlOOH boehmite: structure and vibrational spectrum. Physics and Chemistry of Minerals, 2009, 36, 47-59.	0.8	54
71	Ab initiostudy of antiferromagnetic rutile-typeFeF2. Physical Review B, 1995, 52, 2422-2427.	3.2	53
79	On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. I. The		59

construction of the symmetrized orbitals. , 1998, 67, 299-309. 72

53

#	Article	IF	CITATIONS
73	Vibrational Spectrum of Katoite Ca3Al2[(OH)4]3:Â A Periodic ab Initio Study. Journal of Physical Chemistry B, 2006, 110, 692-701.	2.6	53
74	Implementation of the finite field perturbation method in the CRYSTAL program for calculating the dielectric constant of periodic systems. Journal of Computational Chemistry, 2003, 24, 1305-1312.	3.3	52
75	High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Physics and Chemistry of Minerals, 2011, 38, 223-239.	0.8	52
76	Large-Scale B3LYP Simulations of Ibuprofen Adsorbed in MCM-41 Mesoporous Silica as Drug Delivery System. Journal of Physical Chemistry C, 2014, 118, 26737-26749.	3.1	52
77	First-principles optical response of semiconductors and oxide materials. Physical Review B, 2011, 83, .	3.2	51
78	Assessing thermochemical properties of materials through ab initio quantum-mechanical methods: the case of α-Al ₂ O ₃ . Physical Chemistry Chemical Physics, 2015, 17, 11670-11677.	2.8	51
79	Well localized crystalline orbitals obtained from Bloch functions: The case ofKNbO3. Physical Review B, 2001, 64, .	3.2	50
80	Physico-Chemical Features of Aluminum Hydroxides As Modeled with the Hybrid B3LYP Functional and Localized Basis Functions. Journal of Physical Chemistry C, 2011, 115, 13107-13134.	3.1	50
81	Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations. Physics and Chemistry of Minerals, 2016, 43, 137-149.	0.8	50
82	A quantum mechanical study of the perovskite structure type of MgSiO3. Physics and Chemistry of Minerals, 1993, 20, 407.	0.8	48
83	On the use of symmetry in the <i>ab initio</i> quantum mechanical simulation of nanotubes and related materials. Journal of Computational Chemistry, 2010, 31, 855-862.	3.3	48
84	On the role of symmetry in the ab initio hartree-fock linear-combination-of-atomic-orbitals treatment of periodic systems. International Journal of Quantum Chemistry, 1986, 29, 1755-1774.	2.0	47
85	On the electrostatic potential in linear periodic polymers. Computer Physics Communications, 1994, 84, 156-172.	7.5	47
86	Analytical Hartree–Fock gradients with respect to the cell parameter: systems periodic in one and two dimensions. Theoretical Chemistry Accounts, 2006, 115, 354-360.	1.4	47
87	CRYSTAL and EMBED, two computational tools for the ab initio study of electronic properties of crystals. International Journal of Quantum Chemistry, 2000, 77, 1032-1048.	2.0	46
88	Ab initiostudy ofMF2(M=Mn,Fe,Co,Ni)rutile-type compounds using the periodic unrestricted Hartree-Fock approach. Physical Review B, 2000, 62, 7816-7823.	3.2	46
89	Vibration Frequencies of Ca3Fe2Si3O12Andradite:Â An ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2005, 109, 18522-18527.	2.6	46
90	Structure and stability of aluminium trihydroxides bayerite and gibbsite: A quantum mechanical ab initio study with the Crystal06 code. Chemical Physics Letters, 2008, 465, 220-225.	2.6	46

#	Article	IF	CITATIONS
91	Near-Hartree-Fock wave functions for solids: The case of crystalline silicon. International Journal of Quantum Chemistry, 1992, 42, 5-33.	2.0	44
92	Periodic unrestricted Hartree-Fock study of corundumlikeTi2O3andV2O3. Physical Review B, 1997, 55, 16122-16131.	3.2	44
93	Hydrogarnet defect in chabazite and sodalite zeolites: A periodic Hartree–Fock and B3-LYP study. Journal of Chemical Physics, 2002, 117, 5337-5346.	3.0	44
94	The vibration properties of the (<i>n</i> ,0) boron nitride nanotubes from <i>ab initio</i> quantum chemical simulations. Journal of Chemical Physics, 2013, 138, 054906.	3.0	44
95	The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree–Fock and density functional theory results obtained with the periodic coupled perturbed Hartree–Fock/Kohn–Sham scheme. Journal of Chemical Physics, 2009, 131, 214704.	3.0	43
96	A new massively parallel version of CRYSTAL for large systems on high performance computing architectures. Journal of Computational Chemistry, 2012, 33, 2276-2284.	3.3	43
97	Fcenter in LiF: A quantum mechanicalab initioinvestigation of the hyperfine interaction between the unpaired electron at the vacancy and its first seven neighbors. Physical Review B, 2001, 63, .	3.2	42
98	B3LYP Simulation of the Full Vibrational Spectrum of 45S5 Bioactive Silicate Glass Compared to v-Silica. Chemistry of Materials, 2008, 20, 5610-5621.	6.7	42
99	Performance of 12 DFT functionals in the study of crystal systems: Al ₂ SiO ₅ orthosilicates and Al hydroxides as a case study. International Journal of Quantum Chemistry, 2010, 110, 2260-2273.	2.0	42
100	Substitutional nitrogen in diamond: A quantum mechanical investigation of the electronic and spectroscopic properties. Carbon, 2018, 134, 354-365.	10.3	42
101	Structure and energetics of imogolite: a quantum mechanical ab initio study with B3LYP hybrid functional. Journal of Materials Chemistry, 2010, 20, 10417.	6.7	41
102	Photoelasticity of crystals from theoretical simulations. Physical Review B, 2013, 88, .	3.2	41
103	Raman spectrum of NaAlSi ₂ O ₆ jadeite. A quantum mechanical simulation. Journal of Raman Spectroscopy, 2014, 45, 703-709.	2.5	41
104	Periodic density functional theory and local-MP2 study of the librational modes of Ice XI. Journal of Chemical Physics, 2009, 130, 074505.	3.0	39
105	Detailed ab-initio analysis of the magnetic coupling in CuF2. Chemical Physics Letters, 2000, 319, 625-630.	2.6	37
106	Ab initio study of the cation vacancy at the surface and in bulk MgO. Physical Chemistry Chemical Physics, 2000, 2, 3893-3901.	2.8	37
107	Anharmonic Vibrational States of Solids from DFT Calculations. Part II: Implementation of the VSCF and VCI Methods. Journal of Chemical Theory and Computation, 2019, 15, 3766-3777.	5.3	37
108	Magnetic coupling in the weak ferromagnetCuF2. Physical Review B, 1999, 59, 1016-1023.	3.2	36

#	Article	IF	CITATIONS
109	Periodic approach to the electronic structure and magnetic coupling in KCuF3, K2CuF4, and Sr2CuO2Cl2 low-dimensional magnetic systems. International Journal of Quantum Chemistry, 2004, 99, 805-823.	2.0	36
110	Examining the Accuracy of Density Functional Theory for Predicting the Thermodynamics of Water Incorporation into Minerals: The Hydrates of Calcium Carbonate. Journal of Physical Chemistry C, 2013, 117, 17814-17823.	3.1	36
111	Structural and elastic anisotropy of crystals at high pressures and temperatures from quantum mechanical methods: The case of Mg2SiO4 forsterite. Journal of Chemical Physics, 2015, 142, 204502.	3.0	36
112	Anharmonic Vibrational States of Solids from DFT Calculations. Part I: Description of the Potential Energy Surface. Journal of Chemical Theory and Computation, 2019, 15, 3755-3765.	5.3	36
113	On the use of symmetry in configurational analysis for the simulation of disordered solids. Journal of Physics Condensed Matter, 2013, 25, 105401.	1.8	34
114	<i>Ab Initio</i> Periodic Simulation of the Spectroscopic and Optical Properties of Novel Porous Graphene Phases. Journal of Physical Chemistry C, 2013, 117, 2222-2229.	3.1	33
115	Correlation correction to the Hartree-Fock total energy of solids. II. Physica Scripta, 1988, 38, 194-198.	2.5	31
116	A quantum mechanical investigation of the electronic and magnetic properties of perovskite. Journal of Physics Condensed Matter, 1997, 9, 489-498.	1.8	31
117	The First and Second Static Electronic Hyperpolarizabilities of Zigzag Boron Nitride Nanotubes. An ab Initio Approach through the Coupled Perturbed Kohn–Sham Scheme. Journal of Physical Chemistry A, 2011, 115, 12631-12637.	2.5	31
118	Infrared and Raman spectroscopic features of the self-interstitial defect in diamond from exact-exchange hybrid DFT calculations. Physical Chemistry Chemical Physics, 2016, 18, 21288-21295.	2.8	31
119	Computation of Second Harmonic Generation for Crystalline Urea and KDP. An ab Initio Approach through the Coupled Perturbed Hartree–Fock/Kohn–Sham Scheme. Journal of Chemical Theory and Computation, 2016, 12, 107-113.	5.3	31
120	Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study. Physical Chemistry Chemical Physics, 2014, 16, 13390-13401.	2.8	30
121	Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride. Physical Review Letters, 2015, 115, 117402.	7.8	30
122	Zinc oxide nanotubes: An <i>ab initio</i> investigation of their structural, vibrational, elastic, and dielectric properties. Journal of Chemical Physics, 2013, 138, 214706.	3.0	29
123	Quantum-Mechanical ab Initio Simulation of the Raman and IR Spectra of Fe ₃ Al ₂ Si ₃ O ₁₂ Almandine. Journal of Physical Chemistry A, 2009, 113, 11289-11294.	2.5	28
124	The IR vibrational properties of six members of the garnet family: A quantum mechanical ab initio study. American Mineralogist, 2011, 96, 1787-1798.	1.9	28
125	Comment on "Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method―[J. Chem. Phys. 137, 204113 (2012)]. Journal of Chemical Physics, 2013, 139, 167101.	3.0	28
126	In silico infrared and Raman spectroscopy under pressure: The case of CaSnO3 perovskite. Journal of Chemical Physics, 2015, 142, 014505.	3.0	28

#	Article	IF	CITATIONS
127	On the structural, electronic and magnetic properties of spinel. Journal of Physics Condensed Matter, 1997, 9, 10715-10724.	1.8	27
128	On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. II. Implementation of the self-consistent-field scheme and examples. , 1998, 67, 311-320.		27
129	Raman spectroscopic features of the neutral vacancy in diamond from ab initio quantum-mechanical calculations. Physical Chemistry Chemical Physics, 2016, 18, 1961-1968.	2.8	27
130	Comparison of different approaches to the study of local defects in crystals. I. Theoretical considerations and computational schemes. Physica Status Solidi (B): Basic Research, 1983, 116, 249-259.	1.5	26
131	Superexchange interaction in K2NiF4: an ab initio Hartree-Fock study. Journal of Physics Condensed Matter, 1995, 7, 7997-8007.	1.8	26
132	Phonon vibrational frequencies and elastic properties of solid SrFCl. An ab initio study. European Physical Journal B, 2005, 43, 453-461.	1.5	26
133	Single-layered chrysotile nanotubes: A quantum mechanical <i>ab initio</i> simulation. Journal of Chemical Physics, 2009, 131, 204701.	3.0	26
134	The electronic states of the neutral vacancy in diamond: a quantum mechanical approach. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	26
135	Lithium trapped-hole centre in magnesium oxide. An ab initio supercell study. Journal of Physics and Chemistry of Solids, 1998, 59, 7-12.	4.0	25
136	Raman Spectrum of Pyrope Garnet. A Quantum Mechanical Simulation of Frequencies, Intensities, and Isotope Shifts. Journal of Physical Chemistry A, 2013, 117, 11464-11471.	2.5	25
137	Quantum-mechanical calculation of the vibrational spectrum of beryl (Al4Be6Si12O36) at the Γ point. Physics and Chemistry of Minerals, 2006, 33, 519-532.	0.8	24
138	Symmetry and random sampling of symmetry independent configurations for the simulation of disordered solids. Journal of Physics Condensed Matter, 2013, 25, 355401.	1.8	24
139	Calculation of the Infrared Intensity of Crystalline Systems. A Comparison of Three Strategies Based on Berry Phase, Wannier Function, and Coupled-Perturbed Kohn–Sham Methods. Journal of Physical Chemistry C, 2019, 123, 8336-8346.	3.1	24
140	Piezo-optic tensor of crystals from quantum-mechanical calculations. Journal of Chemical Physics, 2015, 143, 144504.	3.0	23
141	Characterization of the B-Center Defect in Diamond through the Vibrational Spectrum: A Quantum-Mechanical Approach. Journal of Physical Chemistry A, 2018, 122, 594-600.	2.5	23
142	A quantum-mechanical study of the relative stability under pressure of MgSiO3-ilmenite, MgSiO3-perovskite, and MgO-periclase+SiO2-stishovite assemblage. Physics and Chemistry of Minerals, 1994, 21, 285.	0.8	22
143	The infrared spectrum of ortho-enstatite from reflectance experiments and first-principle simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 147-154.	4.4	22
144	On the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field <i>ab initio</i> calculations. Journal of Chemical Physics, 2014, 141, 104108.	3.0	21

#	Article	IF	CITATIONS
145	Elucidating the fundamental forces in protein crystal formation: the case of crambin. Chemical Science, 2016, 7, 1496-1507.	7.4	21
146	Electronic structure, dielectric properties and infrared vibrational spectrum of fayalite: An ab initio simulation with an allâ€electron Gaussian basis set and the B3LYP functional. International Journal of Quantum Chemistry, 2012, 112, 2098-2108.	2.0	20
147	The VN ₃ H defect in diamond: a quantum-mechanical characterization. Physical Chemistry Chemical Physics, 2017, 19, 22221-22229.	2.8	20
148	The characterization of the VN H defects in diamond through the infrared vibrational spectrum. A quantum mechanical investigation. Carbon, 2018, 132, 210-219.	10.3	20
149	<i>Ab initio</i> quantumâ€mechanical simulation of the Raman spectrum of grossular. Journal of Raman Spectroscopy, 2009, 40, 416-418.	2.5	19
150	Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine. Physics and Chemistry of Minerals, 2009, 36, 415-420.	0.8	19
151	Structure and Stability of the Al(OH) ₃ Polymorphs Doyleite and Nordstrandite: A Quantum Mechanical ab Initio Study with the CRYSTAL06 Code. Journal of Physical Chemistry C, 2009, 113, 6785-6791.	3.1	19
152	Search and Characterization of Transition State Structures in Crystalline Systems Using Valence Coordinates, Journal of Chemical Theory and Computation, 2010, 6, 1341-1350.	5.3	19
153	xmlns:xocs= http://www.elsevier.com/xml/xocs/dtd xmlns:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.6	19
154	Calculation of the dynamic first electronic hyperpolarizability <i>β</i> (â²³ <i>ω Ïf</i> ; <i>ω</i> 1,) Tj E Chemical Physics, 2015, 143, 244102.	۲Qq0 0 0 r 3.0	gBT /Overloch 19
155	Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Physical Chemistry Chemical Physics, 2019, 21, 20939-20950.	2.8	19
156	Hartree–Fock study of polysulphurâ€nitride. I. The isolated infinite chain. Journal of Chemical Physics, 1984, 81, 2839-2844.	3.0	18
157	Calculation of the static electronic second hyperpolarizability or χ(3) tensor of three-dimensional periodic compounds with a local basis set. Journal of Chemical Physics, 2009, 131, 184105.	3.0	18
158	Hydrogen atoms in the diamond vacancy defect. A quantum mechanical vibrational analysis. Carbon, 2018, 129, 349-356.	10.3	18
159	Vibrational spectroscopy of hydrogens in diamond: a quantum mechanical treatment. Physical Chemistry Chemical Physics, 2018, 20, 11930-11940.	2.8	17
160	The VN2 negatively charged defect in diamond. A quantum mechanical investigation of the EPR response. Carbon, 2020, 159, 443-450.	10.3	17
161	Vibrational contribution to static and dynamic (Hyper)polarizabilities of zigzag BN nanotubes calculated by the finite field nuclear relaxation method. International Journal of Quantum Chemistry, 2012, 112, 2160-2170.	2.0	16
162	Elasticity of grossular–andradite solid solution: an ab initio investigation. Physical Chemistry Chemical Physics, 2014, 16, 15331.	2.8	16

#	Article	IF	CITATIONS
163	The A-center defect in diamond: quantum mechanical characterization through the infrared spectrum. Physical Chemistry Chemical Physics, 2017, 19, 14478-14485.	2.8	16
164	Nuclearâ€relaxed elastic and piezoelectric constants of materials: Computational aspects of two quantumâ€mechanical approaches. Journal of Computational Chemistry, 2017, 38, 257-264.	3.3	16
165	Low energy excitations in NiO based on a direct Δ-SCF approach. Journal of Physics Condensed Matter, 2018, 30, 495901.	1.8	16
166	Hydrogen, boron and nitrogen atoms in diamond: a quantum mechanical vibrational analysis. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	16
167	Transition metal materials: a first principles approach to the electronic structure of the insulating phase. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 75-88.	3.4	15
168	Pressure effect on elastic anisotropy of crystals from <i>ab initio</i> simulations: The case of silicate garnets. Journal of Chemical Physics, 2014, 140, 234703.	3.0	15
169	Third-Order Electric Field Response of Infinite Linear Chains Composed of Phenalenyl Radicals. Journal of Physical Chemistry C, 2016, 120, 6756-6761.	3.1	15
170	Exact-exchange Hartree–Fock calculations for periodic systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 44, 413-418.	0.6	14
171	Raman and infrared vibrational frequencies and elastic properties of solid BaFCl calculated with various Hamiltonians: anab initiostudy. Journal of Physics Condensed Matter, 2005, 17, 535-548.	1.8	14
172	Comparison of the polarizability of periodic systems computed by using the length and velocity operators. Journal of Physics: Conference Series, 2008, 117, 012023.	0.4	14
173	Andraditeâ^'Uvarovite Solid Solutions. An ab Initio All-Electron Quantum Mechanical Simulation with the CRYSTAL06 Code. Journal of Physical Chemistry C, 2009, 113, 14507-14511.	3.1	14
174	Ab initio quantumâ€mechanical prediction of the IR and Raman spectra of Ca ₃ Cr ₂ Si ₃ O ₁₂ Uvarovite garnet. International Journal of Quantum Chemistry, 2010, 110, 416-421.	2.0	14
175	Magnetic interactions and electronic structure of uvarovite and andradite garnets. An ab initio allâ€electron simulation with the CRYSTAL06 program. International Journal of Quantum Chemistry, 2010, 110, 338-351.	2.0	14
176	Convergence properties of the supercell approach in the study of local defects in solids. Phase Transitions, 1994, 52, 151-167.	1.3	13
177	Coupled Perturbed Hartree-Fock Calculation of the Static Polarizability for Periodic Systems: Implementation in the CRYSTAL Code. AIP Conference Proceedings, 2007, , .	0.4	13
178	The infrared vibrational spectrum of andradite-grossular solid solutions: A quantum mechanical simulation. American Mineralogist, 2013, 98, 966-976.	1.9	13
179	Comparison between cluster and supercell approaches: the case of defects in diamond. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	13
180	On the core expansion of metallic beryllium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1982, 45, 601-606.	0.6	12

#	Article	IF	CITATIONS
181	<i>Ab-initio</i> quantum mechanical study of akdalaite (5Al ₂ O ₃ ·) Tj ETQq1 1 0.78431 012013.	4 rgBT 0.4	/Overlock 10 12
182	Use of <i>ab initio</i> methods for the interpretation of the experimental IR reflectance spectra of crystalline compounds. Journal of Computational Chemistry, 2013, 34, 1476-1485.	3.3	12
183	<i>Ab initio</i> periodic study of the conformational behavior of glycine helical homopeptides. Journal of Computational Chemistry, 2010, 31, 1777-1784.	3.3	11
184	Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree–Fock/Kohn–Sham Method. Zeitschrift Fur Physikalische Chemie, 2016, 230, 719-736.	2.8	11
185	Exact–exchange Hartree–Fock calculations for periodic systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1981, 44, 419-425.	0.6	10
186	Comparison of different approaches to the study of local defects in crystals. II. Substitutional impurities in the tightâ€binding approximation. Physica Status Solidi (B): Basic Research, 1983, 116, 547-556.	1.5	10
187	The electronic structure of MgO nanotubes. An ab initio quantum mechanical investigation. Physical Chemistry Chemical Physics, 2013, 15, 13296.	2.8	10
188	The Raman spectrum of grossular garnet: a quantum mechanical simulation of wavenumbers and intensities. Journal of Raman Spectroscopy, 2014, 45, 710-715.	2.5	10
189	The Infrared spectrum of very large (periodic) systems: global versus fragment strategies—the case of three defects in diamond. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	10
190	Interstitial nitrogen atoms in diamond. A quantum mechanical investigation of its electronic and vibrational properties. Physical Chemistry Chemical Physics, 2018, 20, 16615-16624.	2.8	10
191	Substitutional boron and nitrogen pairs in diamond. A quantum mechanical vibrational analysis. Carbon, 2019, 146, 709-716.	10.3	10
192	N ₂ positively charged defects in diamond. A quantum mechanical investigation of the structural, electronic, EPR and vibrational properties. Journal of Materials Chemistry C, 2020, 8, 5239-5247.	5.5	10
193	On the use of symmetry in SCF calculations. The case of fullerenes and nanotubes. AIP Conference Proceedings, 2012, , .	0.4	9
194	Anomalous birefringence in andradite–grossular solid solutions: a quantum-mechanical approach. Physics and Chemistry of Minerals, 2013, 40, 781-788.	0.8	9
195	The V + I defects in diamond: An ab initio investigation of the electronic structure, of the Raman and IR spectra, and of their possible recombination. Journal of Chemical Physics, 2016, 145, 184701.	3.0	9
196	Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Materials Today Communications, 2019, 21, 100616.	1.9	9
197	A promising carbon-based nanosheet as a suitable Na-anode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115121.	3.5	9
198	Strategies for the optimization of the structure of crystalline compounds. Journal of Computational Chemistry, 2022, 43, 184-196.	3.3	9

#	Article	IF	CITATIONS
199	A New Technique for the Evaluation of Densities of States in ab initio Calculations of Periodic Systems. Physica Status Solidi (B): Basic Research, 1984, 122, 211-220.	1.5	8
200	Hartree–Fock study of polysulphur nitride II. Threeâ€dimensional structures and interchain interactions. Journal of Chemical Physics, 1988, 88, 3196-3203.	3.0	8
201	Ab initio modeling of layered materials with the CRYSTAL code: an overview. Zeitschrift Für Kristallographie, 2009, 224, 241-250.	1.1	8
202	Experimental and Theoretical Infrared Signatures of REMO ₃ (RE = La, Pr, Nd, Sm, and M =) Tj ETQqO	0 0 rgBT / 3.1	Oyerlock 10
203	Looking for \$\$sp^2\$\$ s p 2 carbon atoms in diamond: a quantum mechanical study of interacting vacancies. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	8
204	An all-electron study of the low-lying excited states and optical constants of Al ₂ O ₃ in the range 5–80 eV. Journal of Physics Condensed Matter, 2020, 32, 085901.	1.8	8
205	Substitutional carbon defects in silicon: A quantum mechanical characterization through the infrared and Raman spectra. Journal of Computational Chemistry, 2020, 41, 1638-1644.	3.3	8
	The anisotropy of dielectric properties in the orthorhombic and hexagonal structures of Anhydrite $\hat{a} \in \mathcal{C}$		

205	Substitutional carbon defects in silicon: A quantum mechanical characterization through the infrared and Raman spectra. Journal of Computational Chemistry, 2020, 41, 1638-1644.	3.3	8
206	The anisotropy of dielectric properties in the orthorhombic and hexagonal structures of Anhydrite – anab initio and hybrid DFT study. Physica Status Solidi (B): Basic Research, 2006, 243, 2935-2951.	1.5	7
207	On the Use of Benchmarks for Multiple Properties. Computation, 2016, 4, 20.	2.0	7
208	The ferromagnetic and anti-ferromagnetic phases (cubic, tetragonal, orthorhombic) of KMnF ₃ . A quantum mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 26780-26792.	2.8	7
209	The calculated energies and charge and spin distributions of the excited GR1 state in diamond. Journal of Chemical Physics, 2022, 156, 044708.	3.0	7
210	Magnetic interactions in Ca ₃ Fe ₂ Ge ₃ O ₁₂ and Ca ₃ Cr ₂ Ge ₃ O ₁₂ garnets. An ab initio allâ€electron quantum mechanical simulation. International Journal of Quantum Chemistry, 2010, 110, 2192-2201.	2.0	6
211	Interstitial defects in diamond: A quantum mechanical simulation of their EPR constants and vibrational spectra. Journal of Chemical Physics, 2020, 153, 024119.	3.0	6
212	The VN defect in diamond: A quantum mechanical simulation of the vibrational spectra and EPR properties. Carbon, 2020, 170, 600-605.	10.3	5
213	Predicted strong spin-phonon interactions in Li-doped diamond. Physical Chemistry Chemical Physics, 2020, 22, 20612-20617.	2.8	5
214	First principles calculations of the vibrational properties of single and dimer F-type centers in corundum crystals. Journal of Chemical Physics, 2020, 153, 134107.	3.0	5
215	The spectroscopic characterization of interstitial oxygen in bulk silicon: A quantum mechanical simulation. Journal of Chemical Physics, 2020, 152, 054502.	3.0	5
216	Exploitation of symmetry in periodic Self-Consistent-Field ab initio calculations: application to large three-dimensional compounds. Science China Chemistry, 2014, 57, 1418-1426.	8.2	4

#	Article	IF	CITATIONS
217	On the Models for the Investigation of Charged Defects in Solids: The Case of the VN [–] Defect in Diamond. Journal of Physical Chemistry A, 2019, 123, 4806-4815.	2.5	4
218	Oxygen and vacancy defects in silicon. A quantum mechanical characterization through the IR and Raman spectra. Journal of Chemical Physics, 2021, 154, 174707.	3.0	4
219	Electron Densities and Related Properties from the ab-initio Simulation of Crystalline Solids. , 2011, , 79-132.		3
220	Ab initio compressibility of metastable low albite: revealing a lambda-type singularity at pressures of the Earth's upper mantle. Physics and Chemistry of Minerals, 2020, 47, 1.	0.8	3
221	From anisotropy of dielectric tensors to birefringence: a quantum mechanics approach. Rendiconti Lincei, 2020, 31, 835-851.	2.2	3
222	The NVO defects in diamond: A quantum mechanical characterization through its vibrational and Electron Paramagnetic Resonance spectroscopies. Journal of Physics and Chemistry of Solids, 2022, 160, 110304.	4.0	3
223	The superexchange mechanism in crystalline compounds. The case of KMF ₃ (M = Mn, Fe, Co,) Tj ET	Qq1 1 0.7	/843314 rgBT /(
224	Self-trapped excitons in diamond: A Δ -SCF approach. Journal of Chemical Physics, 2022, 157, .	3.0	3
225	Raman activity of the longitudinal optical phonons of the LiNbO ₃ crystal: Experimental determination and quantum mechanical simulation. Journal of Raman Spectroscopy, 2022, 53, 1904-1914.	2.5	3
226	Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab initio Study with the CRYSTAL Code ChemInform, 2005, 36, no.	0.0	2
227	Microscopic Characterization of Oxygen Defects in Diamond as Models for N3 and OK1 Defects: A Comparison of Calculated and Experimental Electron Paramagnetic Resonance Data. Journal of Physical Chemistry A, 2020, 124, 8263-8272.	2.5	2
228	Interstitial carbon defects in silicon. A quantum mechanical characterization through the infrared and Raman spectra. Journal of Computational Chemistry, 2021, 42, 806-817.	3.3	2
229	Vibrational Analysis of Paraelectric–Ferroelectric Transition of LiNbO3: An Ab-Initio Quantum Mechanical Treatment. Symmetry, 2021, 13, 1650.	2.2	2
230	The NVâ^'â√N+ charged pair in diamond: a quantum-mechanical investigation. Physical Chemistry Chemical Physics, 2021, 23, 18724-18733.	2.8	2
231	Quantum mechanical simulation of various phases of KVF ₃ perovskite. Journal of Physics Condensed Matter, 2022, 34, 285401.	1.8	2
232	The role of spin density for understanding the superexchange mechanism in transition metal ionic compounds. The case of KMF ₃ (M = Mn, Fe, Co, Ni, Cu) perovskites. Physical Chemistry Chemical Physics, 2022, 24, 12950-12960.	2.8	2
233	Structure and Vibrational Spectra. , 2013, , 971-987.		1
234	Quantum-mechanical simulation of the IR reflectance spectrum of Mn3Al2Si3O12 spessartine. , 2015, , .		0

#	Article	IF	CITATIONS
235	Scalars, vectors and tensors evolving from slabs to bulk. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	Ο
236	Scientific outline of Claudio Zicovich-Wilson. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	0
237	Structure and Vibrational Spectraâ [~] †. , 2015, , .		Ο
238	The effect of charge and spin state on the Infrared spectra and hyperfine coupling constants of point defects in Silicon. Physica B: Condensed Matter, 2021, 626, 413499.	2.7	0
239	Characterization of the negatively charged NV defect through the spin density distribution and the hyperfine coupling constants. Journal of Physics and Chemistry of Solids, 2021, , 110506.	4.0	0