List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7095470/publications.pdf Version: 2024-02-01

RIN REN

#	Article	IF	CITATIONS
1	Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.	27.8	3,025
2	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
3	Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. Journal of Physical Chemistry B, 2002, 106, 9463-9483.	2.6	1,263
4	Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical Reviews, 2018, 118, 4946-4980.	47.7	1,241
5	Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 2016, 1, .	48.7	1,229
6	When the Signal Is Not from the Original Molecule To Be Detected: Chemical Transformation of <i>para</i> -Aminothiophenol on Ag during the SERS Measurement. Journal of the American Chemical Society, 2010, 132, 9244-9246.	13.7	693
7	Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews, 2008, 37, 1025.	38.1	547
8	Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and Bioanalytical Chemistry, 2009, 394, 1729-1745.	3.7	539
9	Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy. Physical Review Letters, 2004, 92, 096101.	7.8	531
10	Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical Science, 2020, 11, 4563-4577.	7.4	453
11	Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Protocols, 2013, 8, 52-65.	12.0	395
12	Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chemical Communications, 2007, , 3514.	4.1	379
13	Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity. Journal of the American Chemical Society, 2015, 137, 5149-5154.	13.7	360
14	Activation of Oxygen on Gold and Silver Nanoparticles Assisted by Surface Plasmon Resonances. Angewandte Chemie - International Edition, 2014, 53, 2353-2357.	13.8	357
15	Reliable Quantitative SERS Analysis Facilitated by Core–Shell Nanoparticles with Embedded Internal Standards. Angewandte Chemie - International Edition, 2015, 54, 7308-7312.	13.8	352
16	Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Review of Scientific Instruments, 2004, 75, 837-841.	1.3	347
17	ADSORPTION AND REACTION AT ELECTROCHEMICAL INTERFACES AS PROBED BY SURFACE-ENHANCED RAMAN SPECTROSCOPY. Annual Review of Physical Chemistry, 2004, 55, 197-229.	10.8	335
18	Conductive Lewis Base Matrix to Recover the Missing Link of Li ₂ S ₈ during the Sulfur Redox Cycle in Li–S Battery. Chemistry of Materials, 2015, 27, 2048-2055.	6.7	326

#	Article	IF	CITATIONS
19	Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nature Reviews Physics, 2020, 2, 253-271.	26.6	309
20	Synthesis of AgcoreAushellBimetallic Nanoparticles for Immunoassay Based on Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 4002-4006.	2.6	300
21	Probing the electronic and catalytic properties of a bimetallic surface with 3â€nm resolution. Nature Nanotechnology, 2017, 12, 132-136.	31.5	290
22	Surface Catalytic Coupling Reaction of <i>p</i> -Mercaptoaniline Linking to Silver Nanostructures Responsible for Abnormal SERS Enhancement: A DFT Study. Journal of Physical Chemistry C, 2009, 113, 18212-18222.	3.1	283
23	Label-Free Detection of Native Proteins by Surface-Enhanced Raman Spectroscopy Using Iodide-Modified Nanoparticles. Analytical Chemistry, 2014, 86, 2238-2245.	6.5	246
24	Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Physical Chemistry Chemical Physics, 2012, 14, 8485.	2.8	242
25	Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Coreâ€Shell Architecture. Advanced Materials, 2011, 23, 3420-3425.	21.0	240
26	Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2015, 137, 11928-11931.	13.7	232
27	Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nature Communications, 2011, 2, 305.	12.8	227
28	Mechanism of Cellular Uptake of Graphene Oxide Studied by Surfaceâ€Enhanced Raman Spectroscopy. Small, 2012, 8, 2577-2584.	10.0	208
29	Chemical Enhancement Effects in SERS Spectra:  A Quantum Chemical Study of Pyridine Interacting with Copper, Silver, Gold and Platinum Metals. Journal of Physical Chemistry C, 2008, 112, 4195-4204.	3.1	207
30	Quantitative Correlation between Defect Density and Heterogeneous Electron Transfer Rate of Single Layer Graphene. Journal of the American Chemical Society, 2014, 136, 16609-16617.	13.7	206
31	Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chemical Society Reviews, 2017, 46, 4020-4041.	38.1	202
32	Study of Molecular Junctions with a Combined Surface-Enhanced Raman and Mechanically Controllable Break Junction Method. Journal of the American Chemical Society, 2006, 128, 14748-14749.	13.7	200
33	Surface-Enhanced Raman Scattering in the Ultraviolet Spectral Region:  UV-SERS on Rhodium and Ruthenium Electrodes. Journal of the American Chemical Society, 2003, 125, 9598-9599.	13.7	199
34	Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering. Annual Review of Analytical Chemistry, 2011, 4, 129-150.	5.4	177
35	In Situ Study of the Antibacterial Activity and Mechanism of Action of Silver Nanoparticles by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2013, 85, 5436-5443.	6.5	174
36	Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2011, 2, 531-539.	7.4	172

#	Article	IF	CITATIONS
37	Extraordinary Enhancement of Raman Scattering from Pyridine on Single Crystal Au and Pt Electrodes by Shell-Isolated Au Nanoparticles. Journal of the American Chemical Society, 2011, 133, 15922-15925.	13.7	170
38	Quantitative Detection of Photothermal and Photoelectrocatalytic Effects Induced by SPR from Au@Pt Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 11462-11466.	13.8	169
39	Density Functional Study and Normal-Mode Analysis of the Bindings and Vibrational Frequency Shifts of the Pyridineâ^'M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) Complexes. Journal of Physical Chemistry A, 2002, 106, 9042-9052.	2.5	164
40	Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds. Journal of Physical Chemistry Letters, 2014, 5, 1259-1266.	4.6	161
41	Palladium-Coated Gold Nanoparticles with a Controlled Shell Thickness Used as Surface-Enhanced Raman Scattering Substrate. Journal of Physical Chemistry C, 2007, 111, 1105-1112.	3.1	159
42	"Smart―Ag Nanostructures for Plasmon-Enhanced Spectroscopies. Journal of the American Chemical Society, 2015, 137, 13784-13787.	13.7	157
43	Tip-Enhanced Raman Spectroscopy of Benzenethiol Adsorbed on Au and Pt Single-Crystal Surfaces. Angewandte Chemie - International Edition, 2005, 44, 139-142.	13.8	155
44	Optimization of SERS activities of gold nanoparticles and goldâ€core–palladiumâ€shell nanoparticles by controlling size and shell thickness. Journal of Raman Spectroscopy, 2008, 39, 1679-1687.	2.5	148
45	Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. Chemical Communications, 2011, 47, 2520.	4.1	140
46	Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nature Communications, 2017, 8, 14891.	12.8	138
47	Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields. Journal of Raman Spectroscopy, 2005, 36, 541-550.	2.5	136
48	Probing the Location of Hot Spots by Surface-Enhanced Raman Spectroscopy: Toward Uniform Substrates. ACS Nano, 2014, 8, 528-536.	14.6	136
49	Rational Design and Synthesis of γFe ₂ O ₃ @Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Advanced Materials, 2015, 27, 5049-5056.	21.0	135
50	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	12.8	133
51	A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm. Advanced Materials, 2018, 30, e1706031.	21.0	132
52	Raman spectroscopy on transition metals. Analytical and Bioanalytical Chemistry, 2007, 388, 29-45.	3.7	127
53	A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Physical Chemistry Chemical Physics, 2012, 14, 12919.	2.8	126
54	<i>In Situ</i> Identification of Intermediates of Benzyl Chloride Reduction at a Silver Electrode by SERS Coupled with DFT Calculations. Journal of the American Chemical Society, 2010, 132, 9534-9536.	13.7	124

#	Article	IF	CITATIONS
55	Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discussions, 2006, 132, 159-170.	3.2	123
56	Size Effect on SERS of Gold Nanorods Demonstrated via Single Nanoparticle Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20806-20813.	3.1	123
57	Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nature Communications, 2019, 10, 2671.	12.8	119
58	Tip-enhanced Raman spectroscopy: tip-related issues. Analytical and Bioanalytical Chemistry, 2015, 407, 8177-8195.	3.7	113
59	Synthesis of Au@Pd core–shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chemical Physics Letters, 2005, 408, 354-359.	2.6	110
60	BSA-Coated Nanoparticles for Improved SERS-Based Intracellular pH Sensing. Analytical Chemistry, 2014, 86, 12250-12257.	6.5	110
61	Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nature Communications, 2019, 10, 5544.	12.8	108
62	Thickness-Controlled Synthesis of Ultrathin Au Sheets and Surface Plasmonic Property. Journal of the American Chemical Society, 2013, 135, 12544-12547.	13.7	106
63	Surface-Enhanced Raman Spectroscopy Using Gold-Core Platinum-Shell Nanoparticle Film Electrodes: Toward a Versatile Vibrational Strategy for Electrochemical Interfaces. Langmuir, 2006, 22, 10372-10379.	3.5	105
64	Rapid Antibiotic Susceptibility Testing of Pathogenic Bacteria Using Heavy-Water-Labeled Single-Cell Raman Spectroscopy in Clinical Samples. Analytical Chemistry, 2019, 91, 6296-6303.	6.5	104
65	Synthesis of ultrathin and compact Au@MnO ₂ nanoparticles for shellâ€isolated nanoparticleâ€enhanced Raman spectroscopy (SHINERS). Journal of Raman Spectroscopy, 2012, 43, 40-45.	2.5	102
66	Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity. Chemical Communications, 2006, , 4090.	4.1	96
67	Bridging the Gap between Electrochemical and Organometallic Activation: Benzyl Chloride Reduction at Silver Cathodes. Journal of the American Chemical Society, 2010, 132, 17199-17210.	13.7	96
68	Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Nano Letters, 2018, 18, 2209-2216.	9.1	96
69	Tipâ€enhanced Raman spectroscopy – an interlaboratory reproducibility and comparison study. Journal of Raman Spectroscopy, 2014, 45, 22-31.	2.5	94
70	Quantifying Surface Temperature of Thermoplasmonic Nanostructures. Journal of the American Chemical Society, 2018, 140, 13680-13686.	13.7	92
71	Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities. Nano Letters, 2015, 15, 6716-6721.	9.1	88
72	Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Applied Physics Letters, 2007, 91, 101105.	3.3	87

#	Article	IF	CITATIONS
73	Synthesis and Characterization of Au@Co and Au@Ni Coreâ^Shell Nanoparticles and Their Applications in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 345-350.	3.1	84
74	Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: mixed-phase junctions. Journal of Materials Chemistry A, 2014, 2, 17005-17014.	10.3	84
75	Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst. Nature Catalysis, 2020, 3, 834-842.	34.4	84
76	Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods. Journal of Physical Chemistry C, 2009, 113, 10459-10464.	3.1	83
77	Transient Electrochemical Surface-Enhanced Raman Spectroscopy: A Millisecond Time-Resolved Study of an Electrochemical Redox Process. Journal of the American Chemical Society, 2015, 137, 11768-11774.	13.7	83
78	SHINERS and plasmonic properties of Au Core SiO ₂ shell nanoparticles with optimal core size and shell thickness. Journal of Raman Spectroscopy, 2013, 44, 994-998.	2.5	79
79	Distinctive Enhanced and Tunable Plasmon Resonant Absorption from Controllable Au@Cu ₂ O Nanoparticles: Experimental and Theoretical Modeling. Journal of Physical Chemistry C, 2012, 116, 4477-4483.	3.1	77
80	Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nature Communications, 2019, 10, 5318.	12.8	77
81	Key Role of Direct Adsorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Substrate. Journal of Physical Chemistry Letters, 2020, 11, 1022-1029.	4.6	75
82	SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 2493.	2.8	73
83	Au@organosilica multifunctional nanoparticles for the multimodal imaging. Chemical Science, 2011, 2, 1463.	7.4	73
84	Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3829.	1.7	72
85	Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chemical Communications, 2011, 47, 3909.	4.1	72
86	Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications. Advanced Materials, 2021, 33, e2007988.	21.0	72
87	Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surface Science, 2002, 514, 108-116.	1.9	67
88	Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane. Analytical Chemistry, 2008, 80, 5118-5125.	6.5	67
89	Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with ¹⁵ N ₂ Labeling. Analytical Chemistry, 2018, 90, 5082-5089.	6.5	67
90	Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods. Journal of Materials Chemistry, 2011, 21, 14448.	6.7	66

#	Article	IF	CITATIONS
91	Intraband Hot-Electron Photoluminescence from Single Silver Nanorods. ACS Photonics, 2016, 3, 1248-1255.	6.6	66
92	Laser-Induced Formation of Metalâ~'Moleculeâ~'Metal Junctions between Au Nanoparticles As Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 6499-6508.	3.1	64
93	Charge-Transfer Enhancement Involved in the SERS of Adenine on Rh and Pd Demonstrated by Ultraviolet to Visible Laser Excitation. Journal of Physical Chemistry C, 2010, 114, 16588-16595.	3.1	63
94	A Controllable Electrochemical Fabrication of Metallic Electrodes with a Nanometer/Angstrom-Sized Gap Using an Electric Double Layer as Feedback. Angewandte Chemie - International Edition, 2005, 44, 1265-1268.	13.8	62
95	Cu–Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. Journal of Materials Chemistry, 2012, 22, 18192.	6.7	62
96	FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Science Bulletin, 2010, 55, 2635-2642.	1.7	61
97	Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration. Optics Express, 2015, 23, 13804.	3.4	60
98	Periodic trends in the bonding and vibrational coupling: Pyridine interacting with transition metals and noble metals studied by surface-enhanced Raman spectroscopy and density-functional theory. Journal of Chemical Physics, 2003, 119, 1701-1709.	3.0	59
99	Clean and modified substrates for direct detection of living cells by surface-enhanced Raman spectroscopy. Chemical Communications, 2011, 47, 5738.	4.1	59
100	Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nature Communications, 2020, 11, 4211.	12.8	59
101	DNAâ€Directed Gold Nanodimers with Tunable Sizes and Interparticle Distances and Their Surface Plasmonic Properties. Small, 2013, 9, 2308-2315.	10.0	58
102	In Situ Imaging of Live-Cell Extracellular pH during Cell Apoptosis with Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2018, 90, 13922-13928.	6.5	58
103	Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition. ACS Applied Materials & amp; Interfaces, 2020, 12, 36505-36512.	8.0	58
104	Theoretical Consideration on Preparing Silver Particle Films by Adsorbing Nanoparticles from Bulk Colloids to an Airâ^'Water Interface. Langmuir, 2004, 20, 8831-8838.	3.5	56
105	Theoretical Study of Binding Interactions and Vibrational Raman Spectra of Water in Hydrogen-Bonded Anionic Complexes:  (H ₂ 0) <i>_n</i> ⁻ (<i>n</i> = 2)	Tj ETQq1	10784314
106	Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Nanoscale, 2013, 5, 10591.	5.6	55
107	Density functional theory study of surface-enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. Journal of Raman Spectroscopy, 2005, 36, 533-540.	2.5	54
108	Core–shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode. Chemical Communications, 2011, 47, 2023.	4.1	54

#	Article	IF	CITATIONS
109	Interfacial capacitance of graphene: Correlated differential capacitance and in situ electrochemical Raman spectroscopy study. Electrochimica Acta, 2013, 110, 754-761.	5.2	53
110	Multianalyte immunoassay based on surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 896-902.	2.5	52
111	An Effective Strategy for Room-Temperature Synthesis of Single-Crystalline Palladium Nanocubes and Nanodendrites in Aqueous Solution. Crystal Growth and Design, 2009, 9, 2335-2340.	3.0	52
112	Synthesis and Characterization of Gold Nanoparticles Coated with Ultrathin and Chemically Inert Dielectric Shells for SHINERS Applications. Applied Spectroscopy, 2011, 65, 620-626.	2.2	52
113	Dropâ€coating deposition and surfaceâ€enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. Journal of Raman Spectroscopy, 2014, 45, 565-573.	2.5	52
114	Probing the Local Generation and Diffusion of Active Oxygen Species on a Pd/Au Bimetallic Surface by Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2020, 142, 1341-1347.	13.7	52
115	Deep Learning for Biospectroscopy and Biospectral Imaging: State-of-the-Art and Perspectives. Analytical Chemistry, 2021, 93, 3653-3665.	6.5	52
116	Confined etchant layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunnelling microscopy. Faraday Discussions, 1992, 94, 37.	3.2	51
117	Sensitive and Versatile Detection of the Fouling Process and Fouling Propensity of Proteins on Polyvinylidene Fluoride Membranes via Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2011, 83, 1709-1716.	6.5	51
118	Largeâ€Area Hybrid Plasmonic Optical Cavity (HPOC) Substrates for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2018, 28, 1802263.	14.9	51
119	Role of Adsorption Orientation in Surface Plasmon-Driven Coupling Reactions Studied by Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 2306-2312.	4.6	51
120	Extraction of Absorption and Scattering Contribution of Metallic Nanoparticles Toward Rational Synthesis and Application. Analytical Chemistry, 2015, 87, 1058-1065.	6.5	50
121	Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective. Analytical Chemistry, 2016, 88, 9381-9385.	6.5	49
122	Electrochemical and Surfaced-Enhanced Raman Spectroscopic Investigation of CO and SCN-Adsorbed on Aucoreâ^'PtshellNanoparticles Supported on GC Electrodes. Langmuir, 2005, 21, 7449-7455.	3.5	47
123	Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. Chemical Communications, 2007, , 4608.	4.1	47
124	Electrochemically Roughened Palladium Electrodes for Surface-Enhanced Raman Spectroscopy: Methodology, Mechanism, and Application. Journal of Physical Chemistry C, 2007, 111, 1770-1775.	3.1	47
125	Cell-Penetrating Peptide Conjugated SERS Nanosensor for in Situ Intracellular pH Imaging of Single Living Cells during Cell Cycle. Analytical Chemistry, 2019, 91, 8383-8389.	6.5	47
126	Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nature Communications, 2020, 11, 2518.	12.8	47

#	Article	IF	CITATIONS
127	Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 4130.	2.8	46
128	Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale, 2015, 7, 18225-18231.	5.6	46
129	Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study. Journal of Power Sources, 2016, 310, 85-90.	7.8	45
130	Shellâ€Isolated Tipâ€Enhanced Raman and Fluorescence Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 7523-7527.	13.8	44
131	Real‧pace Observation of Atomic Site‧pecific Electronic Properties of a Pt Nanoisland/Au(111) Bimetallic Surface by Tipâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 13177-13181.	13.8	44
132	Liquid-Phase Epitaxial Growth of Highly Oriented and Multivariate Surface-Attached Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 18984-18993.	13.7	44
133	Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics. Nanophotonics, 2019, 8, 307-316.	6.0	44
134	Electrochemically Roughened Rhodium Electrode as a Substrate for Surface-enhanced Raman Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 899-902.	2.6	43
135	Tipâ€enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on singleâ€crystal surfaces: tip regeneration, probe molecule, and enhancement effect. Journal of Raman Spectroscopy, 2009, 40, 1400-1406.	2.5	43
136	High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO ₂ Core–Shell Nanoparticles. ACS Sensors, 2017, 2, 1369-1376.	7.8	43
137	Surface-enhanced Raman spectroscopy with ultraviolet excitation. Journal of Raman Spectroscopy, 2005, 36, 606-612.	2.5	42
138	SERS study of Ag nanoparticles electrodeposited on patterned TiO ₂ nanotube films. Journal of Raman Spectroscopy, 2011, 42, 986-991.	2.5	42
139	Photon-driven charge transfer and Herzberg-Teller vibronic coupling mechanism in surface-enhanced Raman scattering of <i>p</i> -aminothiophenol adsorbed on coinage metal surfaces: A density functional theory study. Journal of Chemical Physics, 2011, 135, 134707.	3.0	40
140	Structural and Charge Sensitivity of Surface-Enhanced Raman Spectroscopy of Adenine on Silver Surface: A Quantum Chemical Study. Journal of Physical Chemistry C, 2013, 117, 23730-23737.	3.1	40
141	LSPR properties of metal nanoparticles adsorbed at a liquid–liquid interface. Physical Chemistry Chemical Physics, 2013, 15, 5374.	2.8	40
142	Shell-isolated nanoparticle-enhanced Raman spectroscopy: Nanoparticle synthesis, characterization and applications in electrochemistry. Journal of Electroanalytical Chemistry, 2013, 688, 5-11.	3.8	40
143	Laser Power Dependent Surface-Enhanced Raman Spectroscopic Study of 4-Mercaptopyridine on Uniform Gold Nanoparticle-Assembled Substrates. Journal of Physical Chemistry C, 2014, 118, 3750-3757.	3.1	40
144	Revealing Intermolecular Interaction and Surface Restructuring of an Aromatic Thiol Assembling on Au(111) by Tip-Enhanced Raman Spectroscopy. Analytical Chemistry, 2016, 88, 915-921.	6.5	40

#	Article	IF	CITATIONS
145	Zr-Metal–Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. ACS Applied Materials & Interfaces, 2019, 11, 3034-3043.	8.0	40
146	Shaping and Shelling Pt and Pd Nanoparticles for Ultraviolet Laser Excited Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2008, 112, 17618-17624.	3.1	39
147	Theoretical Model of Neurotransmitter Release during In Vivo Vesicular Exocytosis Based on a Grainy Biphasic Nano-Structuration of Chromogranins within Dense Core Matrixes. Journal of the Electrochemical Society, 2016, 163, H3014-H3024.	2.9	39
148	SERS From Transition Metals and Excited by Ultraviolet Light. , 2006, , 125-146.		38
149	Electrochemical and in Situ SERS Studies on the Adsorption of 2-Hydroxypyridine and Polyethyleneimine during Silver Electroplating. Journal of Physical Chemistry C, 2009, 113, 9224-9229.	3.1	38
150	Single molecular catalysis of a redox enzyme on nanoelectrodes. Faraday Discussions, 2016, 193, 133-139.	3.2	38
151	Determining the Interfacial Refractive Index via Ultrasensitive Plasmonic Sensors. Journal of the American Chemical Society, 2020, 142, 10905-10909.	13.7	37
152	Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors. Nature Communications, 2020, 11, 2603.	12.8	36
153	Orientational behavior of cyanide on a roughened platinum surface investigated by surface enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 322, 561-566.	2.6	35
154	Theoretical Study on Thermodynamic and Spectroscopic Properties of Electro-Oxidation of <i>p</i> -Aminothiophenol on Gold Electrode Surfaces. Journal of Physical Chemistry C, 2014, 118, 27113-27122.	3.1	35
155	Optimizing Detection Sensitivity on Surface-Enhanced Raman Scattering of Transition-Metal Electrodes with Confocal Raman Microscopy. Applied Spectroscopy, 2003, 57, 419-427.	2.2	34
156	Potential-Dependent Chemisorption of Carbon Monoxide at a Gold Coreâ^'Platinum Shell Nanoparticle Electrode: A Combined Study by Electrochemical in Situ Surface-Enhanced Raman Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2010, 114, 403-411.	3.1	34
157	Ultrathin polydopamine film coated gold nanoparticles: a sensitive, uniform, and stable SHINERS substrate for detection of benzotriazole. Analyst, The, 2017, 142, 3459-3467.	3.5	34
158	Speeding Up the Line-Scan Raman Imaging of Living Cells by Deep Convolutional Neural Network. Analytical Chemistry, 2019, 91, 7070-7077.	6.5	34
159	Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes—effects of potential and electrolyte. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3127-3133.	1.7	33
160	Synthesis of polypyrrole nanowire network with high adenosine triphosphate release efficiency. Electrochimica Acta, 2011, 56, 9887-9892.	5.2	32
161	Coating metals on cellulose–polypyrrole composites: A new route to self-powered drug delivery system. Electrochemistry Communications, 2010, 12, 1367-1370.	4.7	31
162	Electronic structure and morphology of dark oxides on zinc generated by electrochemical treatment. Physical Chemistry Chemical Physics, 2013, 15, 9812-9822.	2.8	31

#	Article	IF	CITATIONS
163	Surface plasmon-enhanced photochemical reactions on noble metal nanostructures. Science China Chemistry, 2015, 58, 574-585.	8.2	31
164	Experimental and Theoretical Study on Isotopic Surface-Enhanced Raman Spectroscopy for the Surface Catalytic Coupling Reaction on Silver Electrodes. Journal of Physical Chemistry C, 2016, 120, 11956-11965.	3.1	31
165	Microphotoelectrochemical Surface-Enhanced Raman Spectroscopy: Toward Bridging Hot-Electron Transfer with a Molecular Reaction. Journal of the American Chemical Society, 2020, 142, 8483-8489.	13.7	31
166	Effect of Intrinsic Properties of Metals on the Adsorption Behavior of Molecules:Â Benzene Adsorption on Pt Group Metals. Journal of Physical Chemistry B, 2006, 110, 17498-17506.	2.6	30
167	Scrolled Polymer Single Crystals Driven by Unbalanced Surface Stresses: Rational Design and Experimental Evidence. Macromolecules, 2011, 44, 7758-7766.	4.8	30
168	An electrochemical surfaceâ€enhanced Raman spectroscopic study on nanorodâ€structured lithium prepared by electrodeposition. Journal of Raman Spectroscopy, 2016, 47, 1017-1023.	2.5	30
169	Surface-Enhanced Raman Scattering Spectra of Thiourea Adsorbed at an Iron Electrode in NaClO4Solution. Journal of Physical Chemistry B, 2002, 106, 10150-10156.	2.6	29
170	Surface-enhanced Raman Spectroscopy and Plasmon-Assisted Photocatalysis of <i>p</i> -Aminothiophenol. Acta Chimica Sinica, 2014, 72, 1125.	1.4	29
171	Surface-enhanced Raman scattering of pyridine on platinum and nickel electrodes in nonaqueous solutions. Chemical Physics Letters, 2002, 366, 440-446.	2.6	28
172	A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au core nanoparticles for high electrocatalytic activity. Physical Chemistry Chemical Physics, 2011, 13, 5441.	2.8	28
173	Raman Imaging from Microscopy to Nanoscopy, and to Macroscopy. Small, 2015, 11, 3395-3406.	10.0	28
174	Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime. Nanoscale, 2018, 10, 4398-4405.	5.6	28
175	Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organic frameworks for supercapacitors. Journal of Power Sources, 2019, 429, 9-16.	7.8	28
176	Potential Dependence of the Orientation of Thiocyanate Adsorbed on an Iron Electrode as Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 7283-7285.	2.6	26
177	Binding Interactions and Raman Spectral Properties of Pyridine Interacting with Bimetallic Silver-Gold Clusters. ChemPhysChem, 2006, 7, 619-628.	2.1	26
178	An Electrochemical in Situ Surface-Enhanced Raman Spectroscopic Study of Carbon Monoxide Chemisorption at a Gold Coreâ^'Platinum Shell Nanoparticle Electrode with a Flow Cell. Journal of Physical Chemistry C, 2009, 113, 17518-17526.	3.1	26
179	Electrochemical Tip-Enhanced Raman Spectroscopy with Improved Sensitivity Enabled by a Water Immersion Objective. Analytical Chemistry, 2019, 91, 11092-11097.	6.5	26
180	Thiourea adsorption on a Pt surface as detected by electrochemical methods and surface-enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2005, 574, 285-289.	3.8	25

#	Article	IF	CITATIONS
181	Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration. Journal of Physical Chemistry Letters, 2015, 6, 2015-2019.	4.6	25
182	Micro-Raman Spectroscopy ofmeso-Tetrakis(p-sulfonatophenyl)porphine at Electrode Surfaces. Journal of Physical Chemistry B, 1998, 102, 8751-8756.	2.6	24
183	Surface-Enhanced Raman Study of Cyanide Adsorption at the Platinum Surface. Journal of Physical Chemistry B, 2003, 107, 2752-2758.	2.6	24
184	Shell-isolated nanoparticle-enhanced Raman spectroscopy of pyridine on smooth silver electrodes. Electrochimica Acta, 2011, 56, 10652-10657.	5.2	24
185	Revealing unconventional host–guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. Light: Science and Applications, 2021, 10, 85.	16.6	24
186	Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au. Chemical Science, 2020, 11, 9807-9817.	7.4	23
187	Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. Nanoscale, 2021, 13, 13962-13975.	5.6	23
188	Vibrational Signature of Doubleâ€End‣inked Molecules at Au Nanojunctions Probed by Surfaceâ€Enhanced Raman Spectroscopy. Chemistry - A European Journal, 2010, 16, 1449-1453.	3.3	22
189	Electronic properties of metal nanorods probed by surface-enhanced Raman spectroscopy. Chemical Communications, 2000, , 1627-1628.	4.1	21
190	Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) Based on Gold-Core Silica-Shell Nanorods. Zeitschrift Fur Physikalische Chemie, 2011, 225, 775-784.	2.8	21
191	A proton shelter inspired by the sugar coating of acidophilic archaea. Scientific Reports, 2012, 2, 892.	3.3	21
192	Constructing Two-Dimensional Nanoparticle Arrays on Layered Materials Inspired by Atomic Epitaxial Growth. Journal of the American Chemical Society, 2015, 137, 2828-2831.	13.7	21
193	Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation. Sensors, 2018, 18, 3841.	3.8	21
194	Orientation Change of Adsorbed Pyrazine on Roughened Rhodium Electrodes as Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 17597-17602.	2.6	20
195	Facile Electrochemical Preparation of Ag Nanothorns and Their Growth Mechanism. Chemistry - A European Journal, 2010, 16, 6766-6770.	3.3	20
196	Rational design of Au nanorods assemblies for highly sensitive and selective SERS detection of prostate specific antigen. RSC Advances, 2015, 5, 38354-38360.	3.6	20
197	Electrochemical fabrication of silver tips for tipâ€enhanced Raman spectroscopy assisted by a machine vision system. Journal of Raman Spectroscopy, 2016, 47, 808-812.	2.5	20
198	Largeâ€Area Plasmonic Metamaterial with Thicknessâ€Dependent Absorption. Advanced Optical Materials, 2021, 9, .	7.3	20

#	Article	IF	CITATIONS
199	Atomic Force Microscopy Based Top-Illumination Electrochemical Tip-Enhanced Raman Spectroscopy. Analytical Chemistry, 2020, 92, 12548-12555.	6.5	19
200	A SERS study of thiocyanate adsorption on Au-core Pd-shell nanoparticle film electrodes. Journal of Electroanalytical Chemistry, 2012, 665, 70-75.	3.8	18
201	Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-upÂlithography. Royal Society Open Science, 2018, 5, 172034.	2.4	18
202	Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. Journal of Chemical Physics, 2020, 153, 170901.	3.0	18
203	Single-Molecule Level Rare Events Revealed by Dynamic Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2020, 92, 15806-15810.	6.5	18
204	POM Anolyte for Allâ€Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH. Advanced Materials, 2022, 34, e2107425.	21.0	18
205	Confocal microprobe Raman spectroscopy for investigating the aggregation process at the liquid/air interface. Chemical Physics Letters, 2000, 328, 17-22.	2.6	17
206	SERS investigation of interfacial water at a silver electrode in acetonitrile solutions. Surface Science, 2003, 531, 217-225.	1.9	17
207	Electrochemical and Surface-Enhanced Raman Spectroscopic Studies on the Adsorption and Electrooxidation of C1 Molecules on a Roughened Rh Electrode. Journal of Physical Chemistry B, 2004, 108, 981-986.	2.6	17
208	Electrochemical polymerization of acetylene on Rh electrodes probed by surface-enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2006, 594, 73-79.	3.8	17
209	<i>In situ</i> and sensitive monitoring of configuration-switching involved dynamic adsorption by surface plasmon-coupled directional enhanced Raman scattering. Physical Chemistry Chemical Physics, 2020, 22, 12624-12629.	2.8	17
210	Adsorption and Electro-Oxidation of Carbon Monoxide at the Platinumâ^'Acetonitrile Interface as Probed by Surface-Enhanced Raman Spectroscopy. Langmuir, 2002, 18, 2737-2742.	3.5	16
211	A Theoretical Study on SERS Intensity of Pyridine Adsorbed on Transition Metal Electrodes. Israel Journal of Chemistry, 2006, 46, 317-327.	2.3	16
212	<i>In situ</i> investigation of hot-electron-induced Suzukiâ^'Miyaura reaction by surface-enhanced Raman spectroscopy. Journal of Applied Physics, 2020, 128, .	2.5	16
213	Electrochemical Tip-Enhanced Raman Spectroscopy: An In Situ Nanospectroscopy for Electrochemistry. Annual Review of Physical Chemistry, 2021, 72, 213-234.	10.8	16
214	Analyzing the Adsorption Behavior of Thiocyanide on Pure Pt and Ni Electrode Sourfaces by Confocal Microprobe Raman Spectroscopy Analytical Sciences, 2000, 16, 225-230.	1.6	15
215	Initial Oxidation Processes on Hydrogenated Silicon Surfaces Studied by In Situ Raman Spectroscopy. Journal of the Electrochemical Society, 2002, 149, G95.	2.9	15
216	Surface-Enhanced Raman Scattering from Bare Zn Electrode. Journal of Physical Chemistry B, 2004, 108, 17519-17522.	2.6	15

#	Article	IF	CITATIONS
217	In situ identification of crystal facet-mediated chemical reactions on tetrahexahedral gold nanocrystals using surface-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 19337.	2.8	15
218	Cantilever Tip Near-Field Surface-Enhanced Raman Imaging of Tris(bipyridine)ruthenium(II) on Silver Nanoparticles-Coated Substrates. Langmuir, 2008, 24, 12054-12061.	3.5	14
219	Potential-dependent adsorption of uracil on a silver electrode in alkaline solutions. Journal of Electroanalytical Chemistry, 2009, 636, 74-79.	3.8	14
220	Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances. ACS Photonics, 2015, 2, 1725-1731.	6.6	14
221	Development of Weak Signal Recognition and an Extraction Algorithm for Raman Imaging. Analytical Chemistry, 2019, 91, 12909-12916.	6.5	14
222	Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography. Nanoscale, 2020, 12, 21401-21408.	5.6	14
223	Developing a Peak Extraction and Retention (PEER) Algorithm for Improving the Temporal Resolution of Raman Spectroscopy. Analytical Chemistry, 2021, 93, 8408-8413.	6.5	13
224	Adsorption and hydrogenation of benzene at platinum electrode surfaces probed by confocal Raman microscopy. Journal of Raman Spectroscopy, 2003, 34, 221-226.	2.5	12
225	Cations-modified cluster model for density-functional theory simulation of potential dependent Raman scattering from surface complex/electrode systems. Chemical Communications, 2012, 48, 4962.	4.1	12
226	Shellâ€Isolated Tipâ€Enhanced Raman and Fluorescence Spectroscopy. Angewandte Chemie, 2018, 130, 7645-7649.	2.0	12
227	Electrostatic Force Triggering Elastic Condensation of Double-Stranded DNA for High-Performance One-Step Immunoassay. Analytical Chemistry, 2018, 90, 11446-11452.	6.5	12
228	<i>Operando</i> Electrochemical X-ray Diffraction and Raman Spectroscopic Studies Revealing the Alkali-Metal Ion Intercalation Mechanism in Prussian Blue Analogues. Journal of Physical Chemistry Letters, 2022, 13, 479-485.	4.6	12
229	Photosynthetic Bacterial Light-Harvesting Antenna Complexes Adsorbed on Silica Nanoparticles Revealed by Silica Shell-Isolated Au Nanoparticle-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 6993-6999.	3.1	11
230	Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors. 2D Materials, 2019, 6, 045052.	4.4	11
231	The Investigation of Electro-Oxidation of Methanol on Pt-Ru Electrode Surfaces by in-situ Raman Spectroscopy. Journal of the Korean Electrochemical Society, 2002, 5, 221-225.	0.1	11
232	Folding and Fracture of Single rystal Graphene Grown on a Cu(111) Foil. Advanced Materials, 2022, 34, e2110509.	21.0	11
233	Confocal microprobe Raman spectroscopic study of the electrochemical reduction of benzene on platinum and rhodium electrodes. Electrochemistry Communications, 2002, 4, 392-396.	4.7	10
234	A self-terminated electrochemical fabrication of electrode pairs with angstrom-sized gaps. Electrochemistry Communications, 2006, 8, 577-580.	4.7	10

#	Article	IF	CITATIONS
235	Immobilization of metallothionein on highly oriented pyrolytic graphite for biosensor design. Surface and Interface Analysis, 2009, 41, 834-838.	1.8	10
236	Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-enhanced Raman spectroscopy. Faraday Discussions, 2009, 140, 155-165.	3.2	10
237	The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays. Journal of Nanoscience and Nanotechnology, 2010, 10, 7188-7191.	0.9	10
238	Virtual Issue on Plasmonic-Based Sensing. ACS Photonics, 2017, 4, 2382-2384.	6.6	10
239	Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications (Adv.) Tj ETQq1 1 0.784	314 rgBT 21.0	/Overlock 10
240	The reorientation of benzonitrile on Platinum electrode probed by surface enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2008, 624, 129-133.	3.8	9
241	Enhanced Raman Scattering by Polystyrene Microspheres and Application for Detecting Molecules Adsorbed on Au Single Crystal Surface. Acta Physico-chimica Sinica, 2008, 24, 1941-1945.	0.6	9
242	Automated weak signal extraction of hyperspectral Raman imaging data by adaptive lowâ€rank matrix approximation. Journal of Raman Spectroscopy, 2020, 51, 2552-2561.	2.5	9
243	Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe. Analytical Chemistry, 2021, 93, 7699-7706.	6.5	9
244	Photoinduced Charge Transfer from a Semiconductor to a Metal Probed at the Single-Nanoparticle Level. ACS Energy Letters, 2021, 6, 3473-3480.	17.4	9
245	Influence of annealing ambience on the formation of cobalt silicides. Chemical Physics Letters, 2003, 372, 15-21.	2.6	8
246	Probing different adsorption behavior of CO on Pt at solid/liquid and solid/gas interfaces by Raman spectroscopy with a three-phase Raman cell. Chemical Physics Letters, 2003, 376, 130-135.	2.6	8
247	Surface bonding on silicon surfaces as probed by tip-enhanced Raman spectroscopy. Science China Chemistry, 2010, 53, 426-431.	8.2	8
248	On the Criteria of Instability for Electrochemical Systems. Chinese Journal of Chemistry, 2002, 20, 657-662.	4.9	8
249	Visualization of a Machine Learning Framework toward Highly Sensitive Qualitative Analysis by SERS. Analytical Chemistry, 2022, 94, 10151-10158.	6.5	8
250	Electrooxidation Mechanism of Methanol at Ptâ€Ru Catalyst Modified GC Electrode in Electrolytes with Different pH Using Electrochemical and SERS Techniques. Chinese Journal of Chemistry, 2007, 25, 1617-1621.	4.9	7
251	Dynamic Raman imaging system with high spatial and temporal resolution. Review of Scientific Instruments, 2017, 88, 095110.	1.3	7
252	Collaborative Low-Rank Matrix Approximation-Assisted Fast Hyperspectral Raman Imaging and Tip-Enhanced Raman Spectroscopic Imaging. Analytical Chemistry, 2021, 93, 14609-14617.	6.5	7

#	Article	IF	CITATIONS
253	Quantitatively Deciphering Electronic Properties of Defects at Atomically Thin Transition-Metal Dichalcogenides. ACS Nano, 2022, 16, 4786-4794.	14.6	7
254	The electrochemical halogenation of benzene: an in situ confocal microprobe Raman study. Chemical Physics Letters, 2002, 364, 593-598.	2.6	6
255	Near-field coupling and SERS effects of palladium nanoparticle dimers. Science Bulletin, 2010, 55, 2930-2936.	1.7	6
256	Electrochemical fabrication of decomposable three-dimensional Au nano-coral structure and its surface-enhanced Raman scattering (SERS). Materials Chemistry and Physics, 2015, 163, 529-536.	4.0	6
257	Evaluation of the SERSâ€based strategy in fast and onâ€site food safety inspection: Qualitative and quantitative analysis of trace unexpected herbicide in complicated herbicide matrix. Journal of Raman Spectroscopy, 2020, 51, 2562-2567.	2.5	6
258	Principles of surface-enhanced Raman spectroscopy. , 2022, , 1-32.		6
259	SERS Study of Electro-oxidation of Formic Acid on Pt-Ru/GC. Acta Physico-chimica Sinica, 2006, 22, 291-295.	0.6	5
260	Stacking faults enriched silver nanowires: Facile synthesis, catalysis and SERS investigations. Journal of Colloid and Interface Science, 2013, 407, 60-66.	9.4	5
261	Effect of the Intrinsic Properties of Metals on the Adsorption Behavior of MoleculesCompetitive and Cooperative Adsorption of Benzene and Other Species on Pt and Rh Surfaces. Journal of Physical Chemistry C, 2007, 111, 3417-3426.	3.1	4
262	Real‧pace Observation of Atomic Site‧pecific Electronic Properties of a Pt Nanoisland/Au(111) Bimetallic Surface by Tipâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2018, 130, 13361-13365.	2.0	4
263	Surface Properties of Octacalcium Phosphate Nanocrystals Are Crucial for Their Bioactivities. ACS Omega, 2021, 6, 25372-25380.	3.5	4
264	Revealing the synergistic effect of capillary force and electrostatic attraction for D-SERS sensitivity. Chemical Communications, 2022, 58, 3953-3956.	4.1	4
265	Tip-Enhanced Raman Spectroscopy for Surface and Interface Analysis. , 2018, , 255-298.		3
266	Celebrating a Century of Excellence in Chemistry at Xiamen University. Chemical Society Reviews, 2021, 50, 4801-4803.	38.1	3
267	Batch preparation of gold nanoparticles with highly uniform morphology and tunable plasmonic properties. Nanotechnology, 2020, 31, 405603.	2.6	3
268	Collapse of a mass-selected C 60ion beam collided on crystal surfaces. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3703-3707.	1.7	2
269	IN SITU PHOTOLUMINESCENCE STUDIES OF SILICON SURFACES DURING PHOTOELECTROCHEMICAL ETCHING PROCESSES. Surface Review and Letters, 2001, 08, 327-335.	1.1	2
270	A combined SERS and MCBJ study on molecular junctions on silicon chips. , 2007, , .		2

#	Article	IF	CITATIONS
271	In-situ Raman Spectroscopic Studies of Pyridine Adsorption on Different Transition Metal Surfaces. , 2007, , 299-337.		2
272	Electrochemical Reflective Absorption Microscopy for Probing the Local Diffusion Behavior in the Electrochemical Interface. Analytical Chemistry, 2019, 91, 2831-2837.	6.5	2
273	Experiments on adsorption at hydrous metal oxide surfaces using attenuated total reflection infrared spectroscopy (ATRIRS) (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 2043-2061.	1.9	2
274	Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy. Chemical Science, 2021, 12, 1930-1936.	7.4	2
275	A Theoretical Study on SERS Intensity of Pyridine Adsorbed on Transition Metal Electrodes. Israel Journal of Chemistry, 2006, 46, 317-327.	2.3	2
276	Revealing protein binding affinity on metal surfaces: an electrochemical approach. Chemical Communications, 2022, 58, 3537-3540.	4.1	2
277	Scanning electrochemical microscopy development of instrumentation utilizing piezo-bimorph X-Y scanners. Chinese Journal of Chemistry, 2010, 13, 105-111.	4.9	1
278	Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy for Inspecting Pesticide Residues. , 2010, , .		1
279	Electromagnetic Coupling Effect for Surface-enhanced Raman Spectroscopy and Tip-enhanced Raman Spectroscopy. , 2010, , .		1
280	Fishing-Mode Tip-enhanced Raman Spectroscopy (FM-TERS) for Studying Single-Molecule Junctions. , 2010, , .		1
281	Chapter 9. Nanoelectrochemistry in the people's republic of China. SPR Electrochemistry, 0, , 275-335.	0.7	1
282	Illuminating nanostructured gold electrode: surface plasmons or electron ejection?. Faraday Discussions, 2018, 210, 281-287.	3.2	1
283	Spectroscopy and microscopy of plasmonic systems. Journal of Chemical Physics, 2021, 155, 090401.	3.0	1
284	Size-dependent phase transitions boost catalytic activity of sub-nanometer gold clusters. Journal of Chemical Physics, 2022, 156, 144304.	3.0	1
285	Materials Science at Xiamen University: A Special Issue Dedicated to the 100th Anniversary of Xiamen University. Advanced Materials, 2021, 33, e2102756.	21.0	1
286	Liquid crystal absorbed on nano-roughened Ag and Au electrodes by SERS. , 2003, 5129, 277.		0
287	Erratum to "Controllable nanogap fabrication on microchip by chronopotentiometry― [Electrochimica Acta 50 (2005) 3041–3047]. Electrochimica Acta, 2006, 51, 3855.	5.2	0
288	Structures and their influence factors of threeâ€dimensional fractal cadmium layer formed by electrodeposition. Chinese Journal of Chemistry, 2001, 19, 1184-1189.	4.9	0

#	Article	IF	CITATIONS
289	Metal Core Organosilica Shell Multifunctional Nanoparticles for Multimodal Cell Imaging. , 2010, , .		0
290	New Operation Mode for SERS Using Ultrathin-Silica-Shelled Gold Nanoparticles. , 2010, , .		0
291	A Theoretical Study of Surface Enhanced Raman Spectroscopy of Aromatic Azo Compounds Linked to Silver Surfaces. , 2010, , .		0
292	Surface-enhanced Raman Spectroscopy for Studying the Tensile Structure Between Au@Pd Nanoparticle Interfaces. , 2010, , .		0
293	Tunable Surface-Enhanced Raman Scattering from Aluminum Nanohole Arrays. , 2010, , .		0
294	Spherical Au@Ag Nanoparticles for Localized Surface Plasmon Resonance Scanning Probes: Synthesis and Dielectric Sensitivity. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1575-1583.	4.9	0
295	Fundamental and Applied Reviews in Analytical Chemistry. Analytical Chemistry, 2022, 94, 1-2.	6.5	0
296	SERS From Transition Metals and Excitedby Ultraviolet Light. , 2006, , 125-146.		0