Jihuai Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094760/publications.pdf Version: 2024-02-01

		9254	15716
536	24,222	74	125
papers	citations	h-index	g-index
537	537	537	20186
all docs	docs citations	times ranked	citing authors

Пыны \//п

#	Article	IF	CITATIONS
1	Hotspots, frontiers, and emerging trends of tandem solar cell research: A comprehensive review. International Journal of Energy Research, 2022, 46, 104-123.	2.2	12
2	n-type absorber by Cd2+ doping achieves high-performance carbon-based CsPbIBr2 perovskite solar cells. Journal of Colloid and Interface Science, 2022, 608, 40-47.	5.0	30
3	Ti3C2T MXene supported SnO2 quantum dots with oxygen vacancies as anode for Li-ion capacitors. Chemical Engineering Journal, 2022, 428, 131993.	6.6	49
4	Enhancing efficiency of perovskite solar cells from surface passivation of Co2+ doped CuGaO2 nanocrystals. Journal of Colloid and Interface Science, 2022, 607, 1280-1286.	5.0	11
5	Electron transport improvement of perovskite solar cells via intercalation of Na doped TiO2 from metal-organic framework MIL-125(Ti). Applied Surface Science, 2022, 574, 151735.	3.1	8
6	Efficient and Stable Carbonâ€Based CsPbIBr ₂ Perovskite Solar Cells by 4â€Aminomethyltetrahydropyran Acetate Modification. Advanced Materials Interfaces, 2022, 9, 2101463.	1.9	11
7	Interface modification by formamidine acetate for efficient perovskite solar cells. Solar Energy, 2022, 232, 304-311.	2.9	9
8	Stability enhancement of perovskite solar cells via multi-point ultraviolet-curing-based protection. Journal of Power Sources, 2022, 520, 230906.	4.0	7
9	lon-pore size match effects and high-performance cucurbit[8]uril-carbon-based supercapacitors. Electrochimica Acta, 2022, 405, 139827.	2.6	9
10	Simultaneously Mitigating Anion and Cation Defects Both in Bulk and Interface for Highâ€Effective Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	2
11	Face-on oriented hydrophobic conjugated polymers as dopant-free hole-transport materials for efficient and stable perovskite solar cells with a fill factor approaching 85%. Journal of Materials Chemistry A, 2022, 10, 3409-3417.	5.2	19
12	Interlayer Modification Using Phenylethylamine Tetrafluoroborate for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 658-666.	2.5	8
13	5â€Chloroindole as Interface Modifier to Improve the Efficiency and Stability of Planar Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	9
14	A green Bi-Solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells. Materials Today Physics, 2022, 22, 100614.	2.9	18
15	Surface dipole affords high-performance carbon-based CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2022, 433, 134611.	6.6	24
16	PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells. Nano Energy, 2022, 95, 106973.	8.2	54
17	Bulky ammonium iodide and in-situ formed 2D Ruddlesden-Popper layer enhances the stability and efficiency of perovskite solar cells. Journal of Colloid and Interface Science, 2022, 614, 247-255.	5.0	12
18	Zinc and Acetate Co-doping for Stable Carbon-Based CsPbIBr ₂ Solar Cells with Efficiency over 10.6%. ACS Applied Energy Materials, 2022, 5, 2720-2726.	2.5	4

#	Article	IF	CITATIONS
19	Deciphering the Reduced Loss in High Fill Factor Inverted Perovskite Solar Cells with Methoxy-Substituted Poly(Triarylamine) as the Hole Selective Contact. ACS Applied Materials & Interfaces, 2022, 14, 12640-12651.	4.0	11
20	Interfacial Defect Passivation Effect of <i>N</i> -Methyl- <i>N</i> -(thien-2-ylmethyl)amine for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 4270-4278.	2.5	2
21	High-efficiency and ultraviolet stable carbon-based CsPbIBr2 solar cells from single crystal three-dimensional anatase titanium dioxide nanoarrays with ultraviolet light shielding function. Journal of Colloid and Interface Science, 2022, 616, 201-209.	5.0	9
22	Selfâ€Activation Enables Cationic and Anionic Coâ€Storage in Organic Frameworks. Advanced Energy Materials, 2022, 12, .	10.2	11
23	Multifunctional Molecule Modification toward Efficient Carbonâ€Based Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells. Advanced Sustainable Systems, 2022, 6, .	2.7	15
24	Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17, 598-605.	15.6	121
25	4-Hydroxy-2,2,6,6-tetramethylpiperidine as a Bifunctional Interface Modifier for High-Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6754-6763.	2.5	3
26	Performance Improvement of Planar Perovskite Solar Cells Using Lauric Acid as Interfacial Modifier. ACS Applied Energy Materials, 2022, 5, 8501-8509.	2.5	2
27	Polarized Molecule 4-(Aminomethyl) Benzonitrile Hydrochloride for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 33383-33391.	4.0	7
28	Two-step hydrothermal synthesis of a fireworks-like amorphous Co3S4 for asymmetric supercapacitors with superior cycling stability. Electrochimica Acta, 2022, 426, 140777.	2.6	5
29	Efficiency improvement of perovskite solar cell utilizing cystamine dihydrochloride for interface modification. Materials Research Bulletin, 2022, 155, 111949.	2.7	5
30	Multifunctional molecule of potassium nonafluoro-1-butanesulfonate for high-efficient perovskite solar cells. Chemical Engineering Journal, 2022, 449, 137851.	6.6	24
31	Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 84-91.	7.1	95
32	Excellent quinoline additive in perovskite toward to efficient and stable perovskite solar cells. Journal of Power Sources, 2021, 481, 228857.	4.0	43
33	Electropolymerization and application of polyoxometalate-doped polypyrrole film electrodes in dye-sensitized solar cells. Electrochemistry Communications, 2021, 122, 106879.	2.3	25
34	Microwave-mechanochemistry-assisted synthesis of Z-scheme HSr2Nb3O10/WO3 heterojunctions for improved simulated sunlight driven photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9, 104624.	3.3	8
35	A dye-sensitized solar cell based on magnetic CoP@FeP ₄ @Carbon composite counter electrode generated an efficiency of 9.88%. Inorganic Chemistry Frontiers, 2021, 8, 5034-5044.	3.0	13
36	Enhanced photovoltage and stability of perovskite photovoltaics enabled by a cyclohexylmethylammonium iodide-based 2D perovskite passivation layer. Nanoscale, 2021, 13, 14915-14924.	2.8	16

#	Article	IF	CITATIONS
37	Postpassivation of Cs _{0.05} (FA _{0.83} MA _{0.17}) _{0.95} Pb(I _{0.83} Br _{0 Perovskite Films with Tris(pentafluorophenyl)borane. ACS Applied Materials & amp; Interfaces, 2021, 13, 2472-2482.}	.17 4.0) <syyb>3</syyb>
38	Highly efficient and stable planar perovskite solar cells with K ₃ [Fe(CN) ₆]-doped spiro-OMeTAD. Journal of Materials Chemistry C, 2021, 9, 7726-7733.	2.7	20
39	Supermolecule Cucurbituril Subnanoporous Carbon Supercapacitor (SCSCS). Nano Letters, 2021, 21, 2156-2164.	4.5	40
40	Plasmonâ€Enhanced Perovskite Solar Cells with Efficiency Beyond 21 %: The Asynchronous Synergistic Effect of Water and Gold Nanorods. ChemPlusChem, 2021, 86, 291-297.	1.3	29
41	High-Efficiency, Low-Hysteresis Planar Perovskite Solar Cells by Inserting the NaBr Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 20251-20259.	4.0	15
42	Sodium Molybdate-Assisted Synthesis of a Cobalt Phosphide Hybrid Counter Electrode for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 3851-3860.	2.5	20
43	In Situ Interface Engineering with a Spiroâ€OMeTAD/CoO Hierarchical Structure via One‣tep Spinâ€Coating for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2002041.	1.9	2
44	CoFe2O4 nanocrystals for interface engineering to enhance performance of perovskite solar cells. Solar Energy, 2021, 220, 400-405.	2.9	9
45	Spiro-OMeTAD doped with cumene hydroperoxide for perovskite solar cells. Electrochemistry Communications, 2021, 126, 107020.	2.3	7
46	Kalium persulfate as a low-cost and effective dopant for spiro-OMeTAD in high performance and stable planar perovskite solar cells. Electrochimica Acta, 2021, 380, 138233.	2.6	24
47	Additive Engineering by 6-Aminoquinoline Monohydrochloride for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7083-7090.	2.5	9
48	Cucurbit[8]uril-derived porous carbon as high-performance electrode material for ionic liquid-based supercapacitor. Journal of Energy Storage, 2021, 38, 102527.	3.9	11
49	Carbon-Based Stable CsPbIBr ₂ Solar Cells with Efficiency of over 10% from Bifunctional Quinoline Sulfate Modification. ACS Applied Energy Materials, 2021, 4, 5747-5755.	2.5	13
50	Marked Passivation Effect of Naphthaleneâ€1,8â€Dicarboximides in Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008405.	11,1	116
51	Highâ€Efficiency Carbonâ€Based CsPblBr ₂ Solar Cells with Interfacial Energy Loss Suppressed by a Thin Bulkâ€Heterojunction Layer. Solar Rrl, 2021, 5, 2100375.	3.1	30
52	Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells. Materials Today Physics, 2021, 21, 100543.	2.9	14
53	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	8.8	113
54	Chromium trioxide modified spiro-OMeTAD for highly efficient and stable planar perovskite solar cells. Journal of Energy Chemistry, 2021, 61, 386-394.	7.1	17

#	Article	IF	CITATIONS
55	TiO2 nanotubes supported ultrafine MnCo2O4 nanoparticles as a superior-performance anode for lithium-ion capacitors. International Journal of Hydrogen Energy, 2021, 46, 35330-35341.	3.8	8
56	Ligand exchange of SnO2 effectively improving the efficiency of flexible perovskite solar cells. Journal of Alloys and Compounds, 2021, 883, 160827.	2.8	14
57	Alkali Metal Fluoride-Modified Tin Oxide for n–i–p Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 50083-50092.	4.0	12
58	Phthalide and 1â€lodooctadecane Synergistic Optimization for Highly Efficient and Stable Perovskite Solar Cells. Small, 2021, 17, e2103336.	5.2	23
59	Defect Passivation through Cyclohexylethylamine Post-treatment for High-Performance and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12848-12857.	2.5	6
60	Surface Reconstruction and In Situ Formation of 2D Layer for Efficient and Stable 2D/3D Perovskite Solar Cells. Small Methods, 2021, 5, e2101000.	4.6	33
61	High-Performance Perovskite Solar Cells by Doping Didodecyl Dimethyl Ammonium Bromide in the Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 13471-13481.	2.5	2
62	Ammonium Fluoride Interface Modification for Highâ€Performance and Longâ€Term Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1901017.	1.8	12
63	Synergy of Plasmonic Silver Nanorod and Water for Enhanced Planar Perovskite Photovoltaic Devices. Solar Rrl, 2020, 4, 1900231.	3.1	26
64	Sequential Processing: Crystallization of Ultrasmooth FA 1– x MA x PbI 3 Perovskite Layers for Highly Efficient and Stable Planar Solar Cells. Solar Rrl, 2020, 4, 1900183.	3.1	7
65	Regulation of Interfacial Charge Transfer and Recombination for Efficient Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900198.	3.1	46
66	CoBr ₂ -doping-induced efficiency improvement of CsPbBr ₃ planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 1649-1655.	2.7	37
67	Efficient mesoscopic perovskite solar cells from emulsion-based bottom-up self-assembled TiO2 microspheres. Journal of Materials Science: Materials in Electronics, 2020, 31, 1969-1975.	1.1	0
68	Application of CoV-LDH nano-flower in asymmetric supercapacitors with high electrochemical properties. Electrochimica Acta, 2020, 336, 135550.	2.6	28
69	Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive. Journal of Power Sources, 2020, 450, 227623.	4.0	28
70	Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1904347.	11.1	172
71	Visible-light-driven HSr2Nb3O10/CdS heterojunctions for high hydrogen evolution activity. International Journal of Hydrogen Energy, 2020, 45, 2896-2908.	3.8	16
72	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	5.2	85

Jihuai Wu

#	Article	IF	CITATIONS
73	High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte. Electrochimica Acta, 2020, 331, 135425.	2.6	119
74	High efficiency and stability of perovskite solar cells from ï€-conjugated 5-(Fmoc-amino) valeric acid modification. Organic Electronics, 2020, 87, 105982.	1.4	8
75	Single Source, Surfactantâ€Free, and Oneâ€Step Solvothermal Route Synthesized TiO ₂ Microspheres for Highly Efficient Mesoscopic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000519.	3.1	7
76	Interfacial defect passivation by chenodeoxycholic acid for efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 472, 228502.	4.0	21
77	Design of a redox-active "water-in-salt―hydrogel polymer electrolyte for superior-performance quasi-solid-state supercapacitors. New Journal of Chemistry, 2020, 44, 17070-17078.	1.4	13
78	Highly efficient and stable perovskite solar cells using thionyl chloride as a p-type dopant for spiro-OMeTAD. Journal of Alloys and Compounds, 2020, 847, 156500.	2.8	19
79	Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells. RSC Advances, 2020, 10, 38736-38745.	1.7	12
80	Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells. Small, 2020, 16, e2004877.	5.2	35
81	High-capacity MnCo2O4 supported by reduced graphene oxide as an anode for lithium-ion capacitors. Journal of Energy Storage, 2020, 30, 101427.	3.9	16
82	Building Lithiophilic Ionâ€Conduction Highways on Garnetâ€Type Solidâ€State Li ⁺ Conductors. Advanced Energy Materials, 2020, 10, 1904230.	10.2	62
83	Improved redox-active ionic liquid-based ionogel electrolyte by introducing carbon nanotubes for application in all-solid-state supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 17131-17139.	3.8	88
84	Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells. Journal of Alloys and Compounds, 2020, 844, 156032.	2.8	34
85	Basic magnesium-doped nickel-based electrodes with card-on-lawn structure for supercapacitor with high energy density. Journal of Electroanalytical Chemistry, 2020, 863, 114040.	1.9	8
86	Defect control in perovskite solar cells by interfacial engineering using iodobenzene diacetate. Journal of Alloys and Compounds, 2020, 825, 154035.	2.8	10
87	Defect Control Strategy by Bifunctional Thioacetamide at Low Temperature for Highly Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12883-12891.	4.0	24
88	T-ZnOw/ZnONP Double-Layer Composite Photoanode with One-Dimensional Low-Resistance Photoelectron Channels for High-Efficiency DSSCs. Journal of Physical Chemistry C, 2020, 124, 4408-4413.	1.5	3
89	Highly Efficient CsPbBr ₃ Planar Perovskite Solar Cells via Additive Engineering with NH ₄ SCN. ACS Applied Materials & Interfaces, 2020, 12, 10579-10587.	4.0	80
90	Polymeric Sulfur as a Li Ion Conductor. Nano Letters, 2020, 20, 2191-2196.	4.5	15

#	Article	IF	CITATIONS
91	Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%. Journal of Alloys and Compounds, 2020, 823, 153730.	2.8	12
92	Highâ€Efficiency Lowâ€Temperatureâ€Processed Mesoscopic Perovskite Solar Cells from SnO ₂ Nanorod Selfâ€Assembled Microspheres. Solar Rrl, 2020, 4, 1900558.	3.1	21
93	Highâ€Performance Perovskite Solar Cells Using Iodine as Effective Dopant for Spiroâ€OMeTAD. Energy Technology, 2020, 8, 1901171.	1.8	14
94	Fabrication of UV–Vis-NIR-driven photocatalysts Ag/Bi/BiOCl0.8Br0.2 with high catalytic activity. Separation and Purification Technology, 2019, 210, 281-291.	3.9	41
95	Efficient inverted planar perovskite solar cells based on inorganic hole-transport layers from nickel-containing organic sol. Functional Materials Letters, 2019, 12, 1850088.	0.7	7
96	Synergistic Cobalt Sulfide/Eggshell Membrane Carbon Electrode. ACS Applied Materials & Interfaces, 2019, 11, 32244-32250.	4.0	32
97	Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates. ACS Applied Materials & Interfaces, 2019, 11, 32159-32168.	4.0	41
98	Facile synthesis of three-dimensional WO3-x/Bi/BiOCl hierarchical heterostructures with broad spectrum driven photocatalytic activity. Journal of Alloys and Compounds, 2019, 806, 418-427.	2.8	39
99	Enhanced Interfacial Binding and Electron Extraction Using Boronâ€Doped TiO ₂ for Highly Efficient Hysteresisâ€Free Perovskite Solar Cells. Advanced Science, 2019, 6, 1901213.	5.6	80
100	Solvent engineering of LiTFSI towards high-efficiency planar perovskite solar cells. Solar Energy, 2019, 194, 321-328.	2.9	17
101	Self-assembled NiO microspheres for efficient inverted mesoscopic perovskite solar cells. Solar Energy, 2019, 193, 111-117.	2.9	18
102	A high-performance asymmetric supercapacitor based on Ni ₃ S ₂ -coated NiSe arrays as positive electrode. New Journal of Chemistry, 2019, 43, 2389-2399.	1.4	41
103	Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF ₄ :Eu ³⁺ nanophosphors. Journal of Materials Chemistry C, 2019, 7, 937-942.	2.7	40
104	High performance and stable perovskite solar cells using vanadic oxide as a dopant for spiro-OMeTAD. Journal of Materials Chemistry A, 2019, 7, 13256-13264.	5.2	81
105	Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells. Solar Energy, 2019, 185, 508-515.	2.9	47
106	High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. Journal of Power Sources, 2019, 426, 178-187.	4.0	65
107	Pyrrole: an additive for improving the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 11764-11770.	5.2	61
108	One-step solvothermal synthesis of high-capacity Fe3O4/reduced graphene oxide composite for use in Li-ion capacitor. Journal of Alloys and Compounds, 2019, 788, 1119-1126.	2.8	42

#	Article	IF	CITATIONS
109	A C ₆₀ /TiO _x bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 11086-11094.	5.2	64
110	Polymer Electrolyte Glue: A Universal Interfacial Modification Strategy for All-Solid-State Li Batteries. Nano Letters, 2019, 19, 2343-2349.	4.5	105
111	N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. Journal of Power Sources, 2019, 425, 60-68.	4.0	196
112	High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers. Solar Energy, 2019, 181, 293-300.	2.9	16
113	Dual Functional Doping of KMnO4 in Spiro-OMeTAD for Highly Effective Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2188-2196.	2.5	22
114	Pierced ZnO nanosheets via a template-free photopolymerization in microemulsion. Journal of Alloys and Compounds, 2019, 787, 779-785.	2.8	15
115	High energy density and high working voltage of a quasi-solid-state supercapacitor with a redox-active ionic liquid added gel polymer electrolyte. New Journal of Chemistry, 2019, 43, 18935-18942.	1.4	29
116	A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers. Applied Surface Science, 2019, 463, 721-731.	3.1	89
117	Mixed-steam annealing treatment for perovskite films to improve solar cells performance. Solar Energy, 2019, 177, 299-305.	2.9	9
118	Hollow rod-like hybrid Co2CrO4/Co1â^'xS for high-performance asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 1045-1055.	1.1	4
119	Highly efficient inverted planar perovskite solar cells from TiO2 nanoparticles modified interfaces between NiO hole transport layers and conductive glasses. Journal of Materials Science: Materials in Electronics, 2019, 30, 529-536.	1.1	5
120	Co ions doped NiTe electrode material for asymmetric supercapacitor application. Journal of Alloys and Compounds, 2019, 776, 993-1001.	2.8	36
121	Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells. Electrochimica Acta, 2019, 293, 211-219.	2.6	56
122	Low-temperature solution-processing high quality Nb-doped SnO ₂ nanocrystals-based electron transport layers for efficient planar perovskite solar cells. Functional Materials Letters, 2019, 12, 1850091.	0.7	21
123	High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO ₂ Mesoporous Scaffold. Research, 2019, 2019, 4049793.	2.8	35
124	In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor. Materials Chemistry and Physics, 2018, 211, 389-398.	2.0	38
125	Preparation of MnO2/porous carbon material with core–shell structure and its application in supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 7957-7964.	1.1	6
126	The Difference Se Makes: A Bioâ€Inspired Dppfâ€Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance. Chemistry - A European Journal, 2018, 24, 8275-8280.	1.7	26

#	Article	IF	CITATIONS
127	Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chemical Communications, 2018, 54, 3170-3173.	2.2	41
128	Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochimica Acta, 2018, 268, 562-568.	2.6	92
129	Ligand-exchange TiO2 nanocrystals induced formation of high-quality electron transporting layers at low temperature for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 178, 65-73.	3.0	34
130	Hydrothermal Synthesis of Hybrid Rod‣ike Hollow CoWO ₄ /Co _{1â^'<i>x</i>} S for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 1047-1055.	1.7	30
131	Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method. Optics Communications, 2018, 412, 186-190.	1.0	6
132	Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation. Solar Energy Materials and Solar Cells, 2018, 176, 230-238.	3.0	46
133	Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 4649-4657.	1.1	33
134	Annealingâ€Free Cr ₂ O ₃ Electronâ€Selective Layer for Efficient Hybrid Perovskite Solar Cells. ChemSusChem, 2018, 11, 619-628.	3.6	22
135	Hydrothermal synthesis of CoMoO 4 /Co 1- x S hybrid on Ni foam for high-performance supercapacitors. Journal of Energy Chemistry, 2018, 27, 478-485.	7.1	35
136	High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals. Solar Energy, 2018, 161, 100-108.	2.9	60
137	Effective iron-molybdenum-disulfide counter electrodes for use in platinum-free dye-sensitized solar cells. Science China Materials, 2018, 61, 1278-1284.	3.5	9
138	Improving the Performance of a Perovskite Solar Cell by Adjusting the Dispersant for Titanium Dioxide. Energy Technology, 2018, 6, 677-682.	1.8	2
139	The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation. Solid State Sciences, 2018, 78, 95-106.	1.5	33
140	Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Advances, 2018, 8, 7997-8006.	1.7	63
141	Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors. Applied Surface Science, 2018, 434, 861-870.	3.1	64
142	Fast fabricated high performance antisolvent-free perovskite solar cells via dual-flash process. Electrochimica Acta, 2018, 259, 402-409.	2.6	10
143	Enhancement of the Photovoltaic Properties of Dyeâ€5ensitized Solar Cells Using Y _{0.80} Yb _{0.18} Er _{0.02} OF Nanorods. Energy Technology, 2018, 6, 744-751.	1.8	4
144	CdSe x S1â^'x /CdS-cosensitized 3D TiO2 hierarchical nanostructures for efficient energy conversion. Journal of Solid State Electrochemistry, 2018, 22, 347-353.	1.2	7

#	Article	IF	CITATIONS
145	Construction of NiTe/NiSe Composites on Ni Foam for Highâ€Performance Asymmetric Supercapacitor. ChemElectroChem, 2018, 5, 507-514.	1.7	36
146	An Additive of Sulfonic Lithium Salt for Highâ€Performance Perovskite Solar Cells. ChemistrySelect, 2018, 3, 12320-12324.	0.7	8
147	Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor. International Journal of Hydrogen Energy, 2018, 43, 23372-23381.	3.8	68
148	Dual interfacial modification engineering with p-type NiO nanocrystals for preparing efficient planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 13034-13042.	2.7	37
149	Thiourea Interfacial Modification for Highly Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6700-6706.	2.5	20
150	Diboronâ€Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805085.	11.1	128
151	Additive engineering induced perovskite crystal growth for high performance perovskite solar cells. Organic Electronics, 2018, 63, 207-215.	1.4	26
152	Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent. Journal of Power Sources, 2018, 404, 64-72.	4.0	33
153	High-performance planar perovskite solar cells based on low-temperature solution-processed well-crystalline SnO2 nanorods electron-transporting layers. Chemical Engineering Journal, 2018, 351, 391-398.	6.6	35
154	Pyridine solvent engineering for high quality anion-cation-mixed hybrid and high performance of perovskite solar cells. Journal of Power Sources, 2018, 399, 144-150.	4.0	57
155	N,O odoped Hierarchically Porous Carbons Derived from Squid Pen for High apacity Supercapacitors. ChemistrySelect, 2018, 3, 8144-8150.	0.7	4
156	An efficient solvent additive for the preparation of anion-cation-mixed hybrid and the high performance perovskite solar cells. Journal of Colloid and Interface Science, 2018, 531, 602-608.	5.0	15
157	High-Efficiency Planar Hybrid Perovskite Solar Cells Using Indium Sulfide as Electron Transport Layer. ACS Applied Energy Materials, 2018, 1, 4050-4056.	2.5	30
158	Hydrothermal Synthesis of Co-Doped NiSe2 Nanowire for High-Performance Asymmetric Supercapacitors. Materials, 2018, 11, 1468.	1.3	26
159	Influence of Polymer Additives on the Efficiency and Stability of Ambientâ€Air Solutionâ€Processed Planar Perovskite Solar Cells. Energy Technology, 2018, 6, 2380-2386.	1.8	42
160	Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 13138-13147.	1.1	12
161	Low-temperature solution-processed efficient electron-transporting layers based on BF ₄ ^{â^'} -capped TiO ₂ nanorods for high-performance planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 334-341.	2.7	31
162	Improved Photovoltaic Performance of CdS/CdSe Co-Sensitized Solar Cells by Using CuS/FeS Counter Electrodes. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 151-155.	0.1	3

#	Article	IF	CITATIONS
163	CdS sensitized TiO 2 nanorod arrays based solar cells prepared with polymer-assisted layer-by-layer adsorption and reaction method. Optics Communications, 2017, 395, 111-116.	1.0	10
164	Improved performance of CdSe/CdS/PbS co-sensitized solar cell with double-layered TiO 2 films as photoanode. Optics Communications, 2017, 395, 117-121.	1.0	18
165	Solvent engineering for forming stonehenge-like PbI ₂ nano-structures towards efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4376-4383.	5.2	59
166	A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells. Applied Surface Science, 2017, 401, 1-6.	3.1	31
167	Controlled growth of CH3NH3PbI3 films towards efficient perovskite solar cells by varied-stoichiometric intermediate adduct. Applied Surface Science, 2017, 403, 572-577.	3.1	25
168	Fabrication of ZnO/SnO2 hierarchical structures as the composite photoanodes for efficient CdS/CdSe co-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	3
169	Nickel selenide/reduced graphene oxide nanocomposite as counter electrode for high efficient dye-sensitized solar cells. Journal of Colloid and Interface Science, 2017, 498, 217-222.	5.0	41
170	Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017, 21, 1523-1531.	1.2	7
171	A comparative study of 0,p-dimethoxyphenyl-based hole transport materials by altering π-linker units for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10480-10485.	5.2	60
172	Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance. Applied Surface Science, 2017, 423, 119-130.	3.1	84
173	A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Applied Surface Science, 2017, 422, 597-606.	3.1	40
174	Influence of deposition voltage of cobalt diselenide preparation on the film quality and the performance of dye-sensitized solar cells. Solar Energy, 2017, 151, 61-67.	2.9	25
175	A square-planar nickel dithiolate complex as an efficient molecular catalyst for the electro- and photoreduction of protons. Chemical Communications, 2017, 53, 7007-7010.	2.2	51
176	Modulated CH3NH3PbI3â^'xBrx film for efficient perovskite solar cells exceeding 18%. Scientific Reports, 2017, 7, 44603.	1.6	60
177	Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. Journal of Energy Chemistry, 2017, 26, 1252-1259.	7.1	75
178	[Pb ₃ Cu ₂ I ₁₀ (phen) ₄] _n : a novel organic–inorganic hybrid ferromagnetic semiconductor. Dalton Transactions, 2017, 46, 14738-14741.	1.6	9
179	Stable Inverted Planar Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Holeâ€Transport Bilayer. Advanced Energy Materials, 2017, 7, 1700763.	10.2	115
180	Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. Journal of Power Sources, 2017, 365, 1-6.	4.0	63

#	Article	IF	CITATIONS
181	Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 2017, 46, 5975-6023.	18.7	609
182	Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells. Electrochimica Acta, 2017, 251, 307-315.	2.6	39
183	Reducing hysteresis and enhancing performance of perovskite solar cells using acetylacetonate modified TiO 2 nanoparticles as electron transport layers. Journal of Power Sources, 2017, 365, 83-91.	4.0	22
184	CH ₃ NH ₃ Br Additive for Enhanced Photovoltaic Performance and Air Stability of Planar Perovskite Solar Cells prepared by Two‧tep Dipping Method. Energy Technology, 2017, 5, 1887-1894.	1.8	18
185	Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41%. Solar Energy, 2017, 157, 853-859.	2.9	31
186	Efficient perovskite solar cells employing a simply-processed CdS electron transport layer. Journal of Materials Chemistry C, 2017, 5, 10023-10028.	2.7	24
187	Hydrothermal Synthesis of CoMoO4/Co9S8 Nanorod Arrays on Nickel Foam for High-Performance Asymmetric Supercapacitors with High Energy Density. Electrochimica Acta, 2017, 252, 470-481.	2.6	25
188	Silver–Sulfur Hybrid Supertetrahedral Clusters: The Hitherto Missing Members in the Metal–Chalcogenide Tetrahedral Clusters. Chemistry - A European Journal, 2017, 23, 14420-14424.	1.7	19
189	A gradient engineered hole-transporting material for monolithic series-type large-area perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21161-21168.	5.2	35
190	Efficient planar perovskite solar cells based on high-quality perovskite films with smooth surface and large crystal grains fabricated in ambient air conditions. Solar Energy, 2017, 155, 942-950.	2.9	32
191	Addition of Lithium Iodide into Precursor Solution for Enhancing the Photovoltaic Performance of Perovskite Solar Cells. Energy Technology, 2017, 5, 1814-1819.	1.8	4
192	Interface Engineering of electron Transport Layerâ€Free Planar Perovskite Solar Cells with Efficiency Exceeding 15 %. Energy Technology, 2017, 5, 1844-1851.	1.8	13
193	Tuning the Fermi Level of TiO ₂ Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1820-1826.	1.8	42
194	Controllable agglomeration of titanium dioxide particles by one-step solvothermal reaction toward efficient dye-sensitized solar cell. Journal of Alloys and Compounds, 2017, 694, 1083-1088.	2.8	7
195	Facile synthesis of porous CuS film as a high efficient counter electrode for quantum-dot-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	1
196	Synthesis and gas sensing properties of SnO2 nanoparticles with different morphologies. Journal of Porous Materials, 2016, 23, 1189-1196.	1.3	8
197	Excellent Electrochemical Performance Hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for Asymmetric Supercapacitors. Electrochimica Acta, 2016, 207, 87-96.	2.6	85
198	Synthesis of TiO2 microspheres building on the etherification and its application for high efficiency solar cells. Journal of Power Sources, 2016, 329, 225-231.	4.0	13

#	Article	IF	CITATIONS
199	TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17%. Journal of Power Sources, 2016, 332, 366-371.	4.0	21
200	Tin oxide nanosheets as efficient electron transporting materials for perovskite solar cells. Solar Energy, 2016, 137, 579-584.	2.9	19
201	High-Performance Molybdenum Diselenide Electrodes Used in Dye-Sensitized Solar Cells and Supercapacitors. IEEE Journal of Photovoltaics, 2016, 6, 1196-1202.	1.5	24
202	Cobalt selenite dihydrate as an effective and stable Pt-free counter electrode in dye-sensitized solar cells. Journal of Power Sources, 2016, 336, 83-90.	4.0	27
203	Multifunctional Rareâ€Earthâ€Doped Tin Oxide Compact Layers for Improving Performances of Photovoltaic Devices. Advanced Materials Interfaces, 2016, 3, 1600881.	1.9	16
204	Optimization of CdSe layer on modified ZnO hierarchical spheres by spin-SILAR for efficient CdS/CdSe co-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 6656-6664.	1.1	4
205	An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. Journal of Solid State Electrochemistry, 2016, 20, 2643-2650.	1.2	13
206	Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. Journal of Alloys and Compounds, 2016, 685, 384-390.	2.8	80
207	Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Applied Surface Science, 2016, 362, 469-476.	3.1	83
208	Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2016, 304, 266-272.	4.0	105
209	Improving the energy density of quasi-solid-state supercapacitors by assembling two redox-active gel electrolytes. International Journal of Hydrogen Energy, 2016, 41, 5725-5732.	3.8	51
210	Preparation of high-efficiency CdS quantum-dot-sensitized solar cells based on ordered TiO2 nanotube arrays. Ceramics International, 2016, 42, 8058-8065.	2.3	17
211	High open voltage and superior light-harvesting dye-sensitized solar cells fabricated by flower-like hierarchical TiO2 composed with highly crystalline nanosheets. Journal of Power Sources, 2016, 307, 138-145.	4.0	33
212	Preparation of long persistent phosphor SrAl2O4:Eu2+, Dy3+ and its application in dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 1350-1356.	1.1	25
213	High-performance and transparent counter electrodes based on polypyrrole and ferrous sulfide nanoparticles for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 5680-5685.	1.1	8
214	Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material. Journal of Power Sources, 2016, 306, 171-177.	4.0	61
215	High-performance Pt-NiO nanosheet-based counter electrodes for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2016, 20, 759-766.	1.2	21
216	An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Advances, 2016, 6, 2778-2784.	1.7	51

#	Article	IF	CITATIONS
217	A transparent cobalt sulfide/reduced graphene oxide nanostructure counter electrode for high efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 187, 210-217.	2.6	36
218	An in situ polymerized PEDOT/Fe ₃ O ₄ composite as a Pt-free counter electrode for highly efficient dye sensitized solar cells. RSC Advances, 2016, 6, 1637-1643.	1.7	28
219	Preparation of novel TiO 2 quantum dot blocking layers at conductive glass/TiO 2 interfaces for efficient CdS quantum dot sensitized solar cells. Journal of Alloys and Compounds, 2016, 656, 253-258.	2.8	15
220	Highâ€performing dyeâ€sensitized solar cells based on reduced graphene oxide/ <scp>PEDOTâ€PSS</scp> counter electrodes with sulfuric acid postâ€treatment. Journal of Applied Polymer Science, 2015, 132, .	1.3	15
221	The relationship between the boron dipyrromethene (BODIPY) structure and the effectiveness of homogeneous and heterogeneous solar hydrogen-generating systems as well as DSSCs. Physical Chemistry Chemical Physics, 2015, 17, 9716-9729.	1.3	54
222	Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochimica Acta, 2015, 173, 252-259.	2.6	63
223	Petal-like cobalt selenide nanosheets used as counter electrode in high efficient dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 2501-2507.	1.1	16
224	PEDOT:PSS assisted preparation of a graphene/nickel cobalt oxide hybrid counter electrode to serve in efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 100159-100168.	1.7	15
225	Pt–Co and Pt–Ni hollow nanospheres supported with PEDOT:PSS used as high performance counter electrodes in dye-sensitized solar cells. Solar Energy, 2015, 122, 727-736.	2.9	27
226	TiO ₂ quantum dots as superb compact block layers for high-performance CH ₃ NH ₃ PbI ₃ perovskite solar cells with an efficiency of 16.97%. Nanoscale, 2015, 7, 20539-20546.	2.8	87
227	A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 159, 166-173.	2.6	90
228	Synthesis and photocatalytic property of an intercalated nanomaterial H2NiTi4O10/TiO2. Ceramics International, 2015, 41, 3839-3844.	2.3	2
229	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	23.0	852
230	Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode. Electrochimica Acta, 2015, 156, 261-266.	2.6	46
231	Improved photovoltaic performance of CdS/CdSe co-sensitized solar cells by using calcined starch–ZnO mesoporous spheres. Journal of Materials Science: Materials in Electronics, 2015, 26, 2955-2961.	1.1	2
232	Improved performance of quantum dots sensitized solar cells using ZnO hierarchical spheres as photoanodes. Ceramics International, 2015, 41, 14501-14507.	2.3	16
233	Novel lead iodine dialkyldithiocarbamates with different dimensions: [PbI(S2CNR2)]n (R2=Me2, (CH2)4,) Tj ETQq	1 1 0.784: 1.8	314 rgBT /0
234	Preparation of Pt–NiO/Co3O4 nanocompounds based counter electrodes from Pt–Ni/Co alloys for high efficient dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 646, 80-85.	2.8	23

#	Article	IF	CITATIONS
235	Graphene/MxWO3 (M=Na, K) nanohybrids with excellent electrical properties. Carbon, 2015, 94, 309-316.	5.4	15
236	Facile one-step hydrothermal preparation ofÂmolybdenum disulfide/carbon composite forÂuseÂinÂsupercapacitor. International Journal of Hydrogen Energy, 2015, 40, 10150-10157.	3.8	179
237	High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2015, 293, 570-576.	4.0	74
238	Preparation of nano-flower-like SnO2 particles and their applications in efficient CdS quantum dots sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 7914-7920.	1.1	10
239	Photocatalytic water reduction from a noble-metal-free molecular dyad based on a thienyl-expanded BODIPY photosensitizer. Chemical Communications, 2015, 51, 12361-12364.	2.2	53
240	Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 640, 29-33.	2.8	45
241	Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 168, 69-75.	2.6	57
242	Erbium and nitrogen co-doped SrTiO3 with highly visible light photocatalytic activity and stability by solvothermal synthesis. Materials Research Bulletin, 2015, 70, 114-121.	2.7	11
243	Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 693-699.	1.1	5
244	Cadmium selenide quantum dots solar cells featuring nickel sulfide/polyaniline as efficient counter electrode provide 4.15% efficiency. RSC Advances, 2015, 5, 42101-42108.	1.7	12
245	A strategy to enhance overall efficiency for dye-sensitized solar cells with a transparent electrode of nickel sulfide decorated with poly(3,4-ethylenedioxythiophene). RSC Advances, 2015, 5, 43639-43647.	1.7	17
246	A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale Research Letters, 2015, 10, 1.	3.1	959
247	Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochimica Acta, 2015, 166, 150-156.	2.6	113
248	Cobalt/molybdenum ternary hybrid with hierarchical architecture used as high efficient counter electrode for dye-sensitized solar cells. Solar Energy, 2015, 122, 326-333.	2.9	16
249	Hydrothermal synthesis of CoMoO ₄ /Co ₉ S ₈ hybrid nanotubes based on counter electrodes for highly efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 83029-83035.	1.7	19
250	Facile synthesis of Ni _{0.85} Se on Ni foam for high-performance asymmetric capacitors. RSC Advances, 2015, 5, 81474-81481.	1.7	41
251	Cobalt selenide/tin selenide hybrid used as a high efficient counter electrode for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 10102-10108.	1.1	21
252	Fine Tuning of Nanocrystal and Pore Sizes of TiO ₂ Submicrospheres toward High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 22277-22283.	4.0	43

#	Article	IF	CITATIONS
253	Bi1–xNixVO4–y Solid Solution with a High Visible-Light Photocatalytic Activity for Degradation Methyl Orange. Journal of Nanoscience and Nanotechnology, 2015, 15, 7240-7243.	0.9	1
254	Effect of ammonia on electrodeposition of cobalt sulfide and nickel sulfide counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2015, 180, 574-580.	2.6	22
255	Efficient Dye-Sensitized Solar Cells Made from High Catalytic Ability of Polypyrrole@Platinum Counter Electrode. Nanoscale Research Letters, 2015, 10, 1015.	3.1	11
256	Cobalt telluride/reduced graphene oxide using as high performance counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 185, 184-189.	2.6	38
257	Nanostructured photoelectrochemical solar cells with polyaniline nanobelts acting as hole conductors. lonics, 2015, 21, 1781-1786.	1.2	7
258	Preparation of PAA- <i>g</i> -PEG/PANI polymer gel electrolyte and its application in quasi solid state dye-sensitized solar cells. Polymer Engineering and Science, 2015, 55, 322-326.	1.5	18
259	Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Advances, 2014, 4, 64068-64074.	1.7	18
260	A redoxâ€mediatorâ€doped gel polymer electrolyte applied in quasiâ€solidâ€state supercapacitors. Journal of Applied Polymer Science, 2014, 131, .	1.3	33
261	Preparation and photocatalytic properties of HLaNb2O7/(Pt, TiO2) perovskite intercalated nanomaterial. International Journal of Hydrogen Energy, 2014, 39, 7747-7752.	3.8	10
262	An efficient redox-mediated organic electrolyte for high-energy supercapacitor. Journal of Power Sources, 2014, 248, 1123-1126.	4.0	55
263	A trinuclear magnesium based metal-organic framework with self-penetrated rob topology. Inorganica Chimica Acta, 2014, 412, 15-19.	1.2	2
264	Influences of solvents on morphology, light absorbing ability and photovoltaic performance of Sb2S3-sensitized TiO2 photoanodes by chemical bath deposition method. Journal of Materials Science: Materials in Electronics, 2014, 25, 673-677.	1.1	4
265	Efficient Mn-doped CdS quantum dot sensitized solar cells based on SnO2 microsphere photoelectrodes. Journal of Materials Science: Materials in Electronics, 2014, 25, 754-759.	1.1	13
266	Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode. Electrochimica Acta, 2014, 129, 229-236.	2.6	34
267	Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity. Ceramics International, 2014, 40, 10583-10591.	2.3	51
268	A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05%. Journal of Power Sources, 2014, 257, 84-89.	4.0	74
269	Room temperature polymerization of poly(3,4-ethylenedioxythiophene) as transparent counter electrodes for dye-sensitized solar cells. Polymers for Advanced Technologies, 2014, 25, 1560-1564.	1.6	11
270	PEDOT:PSS and glucose assisted preparation of molybdenum disulfide/single-wall carbon nanotubes counter electrode and served in dye-sensitized solar cells. Electrochimica Acta, 2014, 142, 68-75.	2.6	30

#	Article	IF	CITATIONS
271	Enhanced Performance of Flexible Dye-Sensitized Solar Cell based on Nickel Sulfide/Polyaniline/Titanium Counter Electrode. Electrochimica Acta, 2014, 149, 117-125.	2.6	33
272	Facile one-step hydrothermal syntheses and supercapacitive performances of reduced graphene oxide/MnO2 composites. Composites Science and Technology, 2014, 103, 113-118.	3.8	18
273	Electrospun lead-doped titanium dioxide nanofibers and the in situ preparation of perovskite-sensitized photoanodes for use in high performance perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 16856-16862.	5.2	81
274	Two 2D 3dâ€4f Heterometallic Coordination Polymers with [<i>Ln</i> ₂ (IN) ₆ (OH)] [–] Clusters and [Cu ₄ Br ₃] <i>_nⁿ</i> ⁺ Chains. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1462-1466.	0.6	3
275	Noble-metal-free BODIPY–cobaloxime photocatalysts for visible-light-driven hydrogen production. Physical Chemistry Chemical Physics, 2014, 16, 23884-23894.	1.3	50
276	Enhanced performance of dye-sensitized solar cells based on an electrodeposited-poly(3,4-ethylenedioxythiophene)/platinum composite counter electrode. Synthetic Metals, 2014, 197, 204-209.	2.1	1
277	Improving photoelectrical performance of dye sensitized solar cells by doping Y2O3:Tb3+ nanorods. Journal of Materials Science: Materials in Electronics, 2014, 25, 2060-2065.	1.1	6
278	Bifacial illuminated PbS quantum dot-sensitized solar cells with translucent CuS counter electrodes. Journal of Materials Science: Materials in Electronics, 2014, 25, 3016-3022.	1.1	6
279	Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells. Energy, 2014, 67, 460-467.	4.5	73
280	Low temperature fabrication of high performance p-n junction on the Ti foil for use in large-area flexible dye-sensitized solar cells. Electrochimica Acta, 2014, 117, 1-8.	2.6	12
281	TiCl4 assisted formation of nano-TiO2 secondary structure in photoactive electrodes for high efficiency dye-sensitized solar cells. Science China Chemistry, 2014, 57, 888-894.	4.2	7
282	Template-free synthesis of polyaniline nanobelts as a catalytic counter electrode in dye-sensitized solar cells. Polymers for Advanced Technologies, 2014, 25, 343-346.	1.6	13
283	Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells. Journal of Power Sources, 2014, 268, 670-676.	4.0	40
284	Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 16531-16537.	5.2	62
285	Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes. Journal of Materials Chemistry A, 2014, 2, 9011.	5.2	124
286	Enhancement of photocatalytic activity from HCa2TaxNb3â^'xO10 (x=0, 1), co-intercalated with sulfides particles. Applied Catalysis B: Environmental, 2014, 147, 920-928.	10.8	20
287	Facile synthesis of Y2O3:Dy3+ nanorods and its application in dye-sensitized solar cells. Applied Surface Science, 2014, 293, 202-206.	3.1	22
288	The photoelectric performance of dye-sensitized solar cells fabricated by assembling pigment–protein complexes of purple bacteria on nanocrystalline photoelectrode. Materials Letters, 2014, 129, 195-197.	1.3	29

#	Article	IF	CITATIONS
289	High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires. Journal of Power Sources, 2014, 266, 440-447.	4.0	41
290	Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta, 2014, 137, 26-33.	2.6	193
291	Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode. Scientific Reports, 2014, 4, 4028.	1.6	141
292	Hydrothermal Synthesis, Crystal Structure and Characterization of a Microporous 3D Pillared-Layer 3d-4f Copper-Holmium Heterometallic Coordination Polymer. Bulletin of the Korean Chemical Society, 2014, 35, 1841-1844.	1.0	0
293	An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene). Scientific Reports, 2013, 3, 1283.	1.6	59
294	Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy, 2013, 54, 315-321.	4.5	94
295	A microporous platinum counter electrode used in dye-sensitized solar cells. Nano Energy, 2013, 2, 622-627.	8.2	90
296	Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors. Journal of Materials Science, 2013, 48, 8463-8470.	1.7	63
297	Efficiency improvement of flexible dye-sensitized solar cells by introducing mesoporous TiO2 microsphere. Science China Chemistry, 2013, 56, 1470-1477.	4.2	6
298	A dye-sensitized solar cell based on PEDOT:PSS counter electrode. Science Bulletin, 2013, 58, 559-566.	1.7	36
299	A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13885.	5.2	89
300	A novel photoelectrochemical solar cell with high efficiency in converting ultraviolet light to electricity. Electrochimica Acta, 2013, 108, 337-342.	2.6	9
301	Hydrothermal synthesis of graphene flake embedded nanosheet-like molybdenum sulfide hybrids as counter electrode catalysts for dye-sensitized solar cells. Materials Chemistry and Physics, 2013, 143, 53-59.	2.0	49
302	Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. Journal of Power Sources, 2013, 233, 320-325.	4.0	83
303	Improving the photovoltaic performance of a dye-sensitized solar cell by using a hierarchical titania bur-like microspheres double layered photoanode. Journal of Materials Chemistry A, 2013, 1, 9869.	5.2	17
304	Discovery of polymorphism-dependent emission for crystalline boron-dipyrromethene dye. Dalton Transactions, 2013, 42, 16268.	1.6	21
305	Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells. Electrochimica Acta, 2013, 112, 655-662.	2.6	46
306	High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1495-1501.	5.2	185

#	Article	IF	CITATIONS
307	A Reversible Redox Strategy for SWCNTâ€Based Supercapacitors Using a Highâ€Performance Electrolyte. ChemPhysChem, 2013, 14, 394-399.	1.0	49
308	A dual function of high performance counter-electrode for stable quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2013, 241, 373-378.	4.0	35
309	Improving photovoltaic performance of dye-sensitized solar cell by downshift luminescence and p-doping effect of Gd2O3:Sm3+. Journal of Luminescence, 2013, 134, 59-62.	1.5	36
310	Ultraviolet-O2 treatment TiO2/Ti anodes for use in Ti grids-based large-area flexible dye-sensitized solar cells. Materials Chemistry and Physics, 2013, 138, 899-904.	2.0	8
311	Quantum dot-sensitized solar cells employing Pt/C60 counter electrode provide an efficiency exceeding 2%. Science China Chemistry, 2013, 56, 93-100.	4.2	5
312	Enhancement of Photovoltaic Performance of Dye-Sensitized Solar Cells by Modifying Tin Oxide Nanorods with Titanium Oxide Layer. Journal of Physical Chemistry C, 2013, 117, 4345-4350.	1.5	54
313	Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate in polymer heterojunction solar cells. Journal of Materials Science, 2013, 48, 3528-3534.	1.7	8
314	A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon, 2013, 55, 1-9.	5.4	131
315	Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochimica Acta, 2013, 96, 110-116.	2.6	52
316	Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties. Journal of Hazardous Materials, 2013, 248-249, 202-210.	6.5	35
317	Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 1289-1295.	5.2	95
318	Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2013, 92, 64-70.	2.6	79
319	Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells. Scientific Reports, 2013, 3, 2058.	1.6	80
320	Enhanced performance of low-cost dye-sensitized solar cells with pulse-electropolymerized polyaniline counter electrodes. Electrochimica Acta, 2013, 90, 468-474.	2.6	65
321	A HIGH EFFICIENCY DYE-SENSITIZED SOLAR CELL WITH NANO-TIO2 SECONDARY STRUCTURE IN THE PHOTOANODE. Functional Materials Letters, 2013, 06, 1350014.	0.7	4
322	IODINE/IODIDE-FREE AND POLYMER HETEROJUNCTION-SENSITIZED HYBRID SOLAR CELL. Functional Materials Letters, 2012, 05, 1260004.	0.7	3
323	LARGE-SIZED DYE-SENSITIZED SOLAR CELLS WITH TiO₂ CEMENTED AND PROTECTED SILVER GRIDS. Functional Materials Letters, 2012, 05, 1250010.	0.7	1
324	A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochimica Acta, 2012, 85, 162-168.	2.6	152

#	Article	IF	CITATIONS
325	CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency. Electrochimica Acta, 2012, 85, 182-186.	2.6	17
326	Enhancing photovoltaic performance of dye-sensitized solar cells by using thermally decomposed mirror-like Pt-counter electrodes. Thin Solid Films, 2012, 522, 425-429.	0.8	13
327	Preparation of hierarchical tin oxide microspheres and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 25335.	6.7	35
328	High efficient PANI/Pt nanofiber counter electrode used in dye-sensitized solar cell. RSC Advances, 2012, 2, 4062.	1.7	42
329	p–n Heterojunction on dye-sensitized ZnO nanorod arrays and macroporous polyaniline network. RSC Advances, 2012, 2, 1863.	1.7	19
330	Controllably hierarchical growth of large-scale ZnO microrods. RSC Advances, 2012, 2, 2211.	1.7	3
331	A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. Journal of Materials Chemistry, 2012, 22, 19025.	6.7	154
332	Application of Poly(3,4-ethylenedioxythiophene):Polystyrenesulfonate/Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 18057-18063.	1.5	108
333	Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 19919.	6.7	189
334	Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors. Journal of Alloys and Compounds, 2012, 513, 474-480.	2.8	71
335	Preparation of a three-dimensional interpenetrating network of TiO2 nanowires for large-area flexible dye-sensitized solar cells. RSC Advances, 2012, 2, 10550.	1.7	17
336	Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 3948.	6.7	56
337	High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents. Journal of Materials Chemistry, 2012, 22, 15836.	6.7	33
338	p–n Heterojunction on Ordered ZnO Nanowires/Polyaniline Microrods Double Array. Langmuir, 2012, 28, 3972-3978.	1.6	54
339	Pulse potentiostatic electropolymerization of high performance PEDOT counter electrodes for Pt-free dye-sensitized solar cells. Electrochimica Acta, 2012, 83, 221-226.	2.6	57
340	Electrodeposition of high performance PEDOT/Ti counter electrodes on Ti meshes for large-area flexible dye-sensitized solar cells. Electrochimica Acta, 2012, 85, 432-437.	2.6	36
341	Facile Synthesis of Mesoporous Tin Oxide Spheres and Their Applications in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 20140-20145.	1.5	71
342	Direct observation of conformational change of adipate dianions encapsulated in water clusters. CrystEngComm, 2012, 14, 5377.	1.3	19

#	Article	IF	CITATIONS
343	Redox-active alkaline electrolyte for carbon-based supercapacitor with pseudocapacitive performance and excellent cyclability. RSC Advances, 2012, 2, 6736.	1.7	140
344	Glucose Aided Preparation of Tungsten Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use as Counter Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6530-6536.	4.0	94
345	Template-free synthesis of a hierarchical flower-like platinum counter electrode and its application in dye-sensitized solar cells. RSC Advances, 2012, 2, 5034.	1.7	22
346	Alcohol elastomer based on superabsorbents. Polymers for Advanced Technologies, 2012, 23, 870-876.	1.6	0
347	Application of Y ₂ O ₃ :Er ³⁺ Nanorods in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2012, 5, 1307-1312.	3.6	64
348	Controllable hydrothermal synthesis of nanocrystal TiO2 particles and their use in dye-sensitized solar cells. Science China Chemistry, 2012, 55, 1308-1313.	4.2	11
349	Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Science China Chemistry, 2012, 55, 1319-1324.	4.2	56
350	Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells. Science Bulletin, 2012, 57, 2329-2334.	1.7	10
351	Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2â^'xNy coupled photocatalysts. Applied Catalysis B: Environmental, 2012, 123-124, 9-17.	10.8	49
352	A novel molybdenum-oxide-based metal–organic hybrid compound with 3-fold interpenetrated topology. Inorganic Chemistry Communication, 2012, 15, 305-307.	1.8	1
353	A novel gel electrolyte for quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2012, 60, 17-22.	2.6	13
354	Bi-functional TiO2 cemented Ag grid under layer for enhancing the photovoltaic performance of a large-area dye-sensitized solar cell. Electrochimica Acta, 2012, 62, 313-318.	2.6	8
355	Low cost poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2012, 67, 113-118.	2.6	58
356	Application of Yb3+, Er3+-doped yttrium oxyfluoride nanocrystals in dye-sensitized solar cells. Electrochimica Acta, 2012, 70, 131-135.	2.6	45
357	A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. Journal of Power Sources, 2012, 198, 402-407.	4.0	266
358	Preparation of poly(acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2012, 203, 282-287.	4.0	60
359	Using eggshell membrane as a separator in supercapacitor. Journal of Power Sources, 2012, 206, 463-468.	4.0	101
360	The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells. Journal of Power Sources, 2012, 208, 197-202.	4.0	31

#	Article	IF	CITATIONS
361	A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO2 film. Thin Solid Films, 2012, 520, 2102-2105.	0.8	12
362	A Largeâ€Area Lightâ€Weight Dyeâ€Sensitized Solar Cell based on All Titanium Substrates with an Efficiency of 6.69% Outdoors. Advanced Materials, 2012, 24, 1884-1888.	11.1	146
363	Enhancement of the Photovoltaic Performance of Dyeâ€Sensitized Solar Cells by Doping Y _{0.78} Yb _{0.20} Er _{0.02} F ₃ in the Photoanode. Advanced Energy Materials, 2012, 2, 78-81.	10.2	131
364	Gelation of a liquid electrolyte with aniline for use in a quasi-solid-state dye-sensitized solar cell. Science China Chemistry, 2012, 55, 242-246.	4.2	5
365	Anhydrous proton exchange membrane operated at 200 °C and a well-aligned anode catalyst. Journal of Materials Chemistry, 2011, 21, 16010.	6.7	18
366	A facile route to a macroporous silver network for methanol oxidation. RSC Advances, 2011, 1, 1453.	1.7	10
367	A facile way to fabricate highly efficient photoelectrodes with chemical sintered scattering layers for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 15552.	6.7	28
368	Flexible and macroporous network-structured catalysts composed of conducting polymers and Pt/Ag with high electrocatalytic activity for methanol oxidation. Journal of Materials Chemistry, 2011, 21, 13354.	6.7	37
369	Highly conducting multilayer films from graphene nanosheets by a spin self-assembly method. Journal of Materials Chemistry, 2011, 21, 5378.	6.7	24
370	Facile secondary-template synthesis of polyaniline microtube array for enhancing glucose biosensitivity. Journal of Materials Chemistry, 2011, 21, 12927.	6.7	13
371	Growth of large-scaled polypyrrole fibers using polyacrylamide as modifier. E-Polymers, 2011, 11, .	1.3	1
372	Syntheses, crystal structures and properties of two unusual pillared-layer 3d–4f Ln–Cu heterometallic coordination polymers. Journal of Solid State Chemistry, 2011, 184, 2472-2477.	1.4	13
373	An unusual 3D 3d–4f heterometallic coordination polymer based on the linkages of Sm2(IN)6 pillars and 2D [Cu7Br6]n+ layers: Crystal structure and luminescent property. Inorganic Chemistry Communication, 2011, 14, 1906-1910.	1.8	10
374	Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 8545-8550.	2.6	68
375	Influence of NH3·H2O additive on the photovoltaic performance of dye-sensitized solar cells with chemical sintered scattering layers. Electrochimica Acta, 2011, 56, 9926-9930.	2.6	5
376	Preparation of PAA-g-CTAB/PANI polymer based gel-electrolyte and the application in quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2011, 58, 52-57.	2.6	45
377	Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye-sensitized solar cells. Electrochimica Acta, 2011, 58, 621-627.	2.6	28
378	Hydrothermal Synthesis, Crystal Structure and Characterization of a Novel 3D Pillared-Layer 3d–4f Lanthanum-Copper Heterometallic Coordination Polymer. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 346-351.	1.9	5

#	Article	IF	CITATIONS
379	Photocatalytic property of partially substituted Pt-intercalated layered perovskite, ASr2TaxNb3â^'xO10 (A=K, H; x=0, 1, 1.5, 2 and 3). Solar Energy Materials and Solar Cells, 2011, 95, 1019-1027.	3.0	25
380	Influence of surfactants on the morphology and photocatalytic activity of Bi2WO6 by hydrothermal synthesis. Science China Chemistry, 2011, 54, 211-216.	4.2	13
381	Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Science Bulletin, 2011, 56, 325-330.	1.7	38
382	Application of upconversion luminescence in dye-sensitized solar cells. Science Bulletin, 2011, 56, 96-101.	1.7	36
383	Preparation of porous nanoparticle TiO2 films for flexible dye-sensitized solar cells. Science Bulletin, 2011, 56, 2649-2653.	1.7	16
384	Preparation of Gd2O3:Eu3+ downconversion luminescent material and its application in dye-sensitized solar cells. Science Bulletin, 2011, 56, 3114-3118.	1.7	31
385	Quasiâ€solidâ€state dyeâ€sensitized solar cells containing P (MMAâ€ <i>co</i> â€AN)â€based polymeric gel electrolyte. Polymers for Advanced Technologies, 2011, 22, 1812-1815.	1.6	12
386	Oligomer ethylene glycol based electrolytes for dyeâ€sensitized solar cell. Journal of Applied Polymer Science, 2011, 120, 2786-2789.	1.3	1
387	Quasiâ€solid state dyeâ€sensitized solar cells based on the crossâ€ŀinked poly(ethylene glycol) electrolyte with tetraethoxysilane. Journal of Applied Polymer Science, 2011, 120, 1752-1757.	1.3	20
388	Semiconducting polymer-incorporated nanocrystalline TiO2 particles for photovoltaic applications. Electrochimica Acta, 2011, 56, 5184-5188.	2.6	10
389	Polyvinyl pyrrolidone aided preparation of TiO2 films used in flexible dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 7256-7260.	2.6	9
390	Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+). Electrochimica Acta, 2011, 56, 4980-4984.	2.6	68
391	Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochimica Acta, 2011, 56, 6881-6886.	2.6	278
392	Synthesis, crystal structures and luminescent properties of two 4d–4f Ln–Ag heterometallic coordination polymers based on anion template. Journal of Solid State Chemistry, 2011, 184, 899-904.	1.4	16
393	Synthesis of Rutile TiO ₂ Nanorod and Application in Dye-sensitized Solar Cell. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 119-122.	0.6	7
394	Application of thermosetting organic solvent free polymer gel electrolyte in quasiâ€solidâ€state dyeâ€sensitized solar cell. Journal of Applied Polymer Science, 2010, 116, 1329-1333.	1.3	4
395	A multifunctional hydrogel with highâ€conductivity, pHâ€responsive, and release properties from polyacrylate/polyptrrole. Journal of Applied Polymer Science, 2010, 116, 1376-1383.	1.3	9
396	Enhancing the photoelectrical performance of dye-sensitized solar cells using TiO ₂ :Eu ^{3 +} nanorods. Nanotechnology, 2010, 21, 415201.	1.3	67

#	Article	IF	CITATIONS
397	The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 4573-4578.	2.6	52
398	Application of a polymer heterojunction in dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 5798-5802.	2.6	23
399	A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells. Science China Chemistry, 2010, 53, 1352-1357.	4.2	7
400	Preparation of photoanode and its application to flexible dye-sensitized solar cells. Science Bulletin, 2010, 55, 980-985.	1.7	9
401	Preparation of sub-micron size anatase TiO2 particles for use as light-scattering centers in dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2010, 21, 833-837.	1.1	19
402	PF127 aided preparation of super-porous TiO2 film used in highly efficient quasi-solid-state dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2010, 21, 1000-1004.	1.1	6
403	Dye-sensitized solar cell with a solid state organic–inorganic composite electrolyte containing catalytic functional polypyrrole nanoparticles. Journal of Sol-Gel Science and Technology, 2010, 53, 599-604.	1.1	9
404	Synthesis, structure and characterization of a new trinuclear magnetic semiconductor PbI4[Cu(Me2dtc)(bipy)]2. Solid State Sciences, 2010, 12, 558-562.	1.5	14
405	Photocatalytic activities for hydrogen evolution of new layered compound series HLaTax/3Nb2â^xx/3O7/Pt (x=0, 2, 3, 4, and 6). Journal of Hazardous Materials, 2010, 177, 458-464.	6.5	5
406	Enhancing photoelectrical performance of dye-sensitized solar cell by doping with europium-doped yttria rare-earth oxide. Journal of Power Sources, 2010, 195, 6937-6940.	4.0	85
407	Application of poly(acrylic acid-g-gelatin)/polypyrrole gel electrolyte in flexible quasi-solid-state dye-sensitized solar cell. Electrochimica Acta, 2010, 55, 2777-2781.	2.6	68
408	The preparation of poly(glycidyl acrylate)–polypyrrole gel-electrolyte and its application in dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 4883-4888.	2.6	44
409	Photocatalytic property of nitrogen-doped layered perovskite K2La2Ti3O10. Solar Energy Materials and Solar Cells, 2010, 94, 761-766.	3.0	66
410	Quasi-solid-state dye-sensitized solar cell based on a polymer gel electrolyte with in situ synthesized ionic conductors. Comptes Rendus Chimie, 2010, 13, 1401-1405.	0.2	15
411	High conducting multilayer films from poly(acrylic acid) and graphite by layerâ€byâ€layer selfâ€assembly. Polymer Composites, 2010, 31, 145-151.	2.3	3
412	Crystal structure of (2,2′-bipyridine-κ2N,N′)-(N,N-dimethyldithiocarbamato- κ2S,S′)copper(II) iodide, CuI(C10H8N2)(C3H6NS2). Zeitschrift Fur Kristallographie - New Crystal Structures, 2010, 225, 347-348.	0.1	2
413	Poly[[diaquabis(μ3-isonicotinato-κ3N:O:O′)bis(μ2-isonicotinato-κ2N:O)gadolinium(III)disiliver(I)] nitrate monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m1234-m1235.	0.2	0
414	A frame synchronization method for underwater acoustic communication on mobile platform. , 2010,		6

#	Article	IF	CITATIONS
415	The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation. Journal of Alloys and Compounds, 2010, 496, 287-292.	2.8	55
416	Poly[diaquatris(μ ₄ -isophthalato)dilanthanum(III)]. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m240-m240.	0.2	3
417	Synthesis of oriented polyaniline flake arrays. Materials Letters, 2009, 63, 540-542.	1.3	24
418	Preparation and electrical conductivity of SiO2/polypyrrole nanocomposite. Journal of Materials Science, 2009, 44, 849-854.	1.7	34
419	Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption for Fe3+ ion. Journal of Materials Science, 2009, 44, 726-733.	1.7	25
420	Preparation of porous polyacrylate/poly(ethylene glycol) interpenetrating network hydrogel and simplification of Flory theory. Journal of Materials Science, 2009, 44, 3712-3718.	1.7	29
421	Synthesis and properties of poly(acrylamideâ€ <i>co</i> â€acrylic acid)/polyacrylamide superporous IPN hydrogels. Polymers for Advanced Technologies, 2009, 20, 1044-1049.	1.6	10
422	Two steps synthesis and conductivity of polyacrylamide/Cu conducting hydrogel. Polymer Composites, 2009, 30, 1132-1137.	2.3	4
423	Synthesis of polyacrylate/poly(ethylene glycol) hydrogel and its absorption properties for heavy metal ions and dye. Polymer Composites, 2009, 30, 1183-1189.	2.3	26
424	Application of polymer gel electrolyte with graphite powder in quasiâ€solidâ€state dyeâ€sensitized solar cells. Polymer Composites, 2009, 30, 1687-1692.	2.3	14
425	Design and electrical conductivity of poly(acrylic acidâ€≺i>gâ€gelatin)/graphite conducting gel. Polymer Engineering and Science, 2009, 49, 1871-1878.	1.5	11
426	Photocatalytic activities of HLaNb2O7 prepared by polymerized complex method. International Journal of Hydrogen Energy, 2009, 34, 5318-5325.	3.8	20
427	Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335 (A=K, H). International Journal of Hydrogen Energy, 2009, 34, 7927-7933.	3.8	13
428	High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells. Solar Energy, 2009, 83, 845-849.	2.9	158
429	Photocatalytic water splitting with In-doped H2LaNb2O7 composite oxide semiconductors. Solar Energy Materials and Solar Cells, 2009, 93, 1176-1181.	3.0	23
430	Fabrication and photocatalytic property of Pt-intercalated layered perovskite niobates H1â^'xLaNb2â^'xMoxO7 (x=0–0.15). Journal of Hazardous Materials, 2009, 166, 103-108.	6.5	19
431	Layer-by-layer self-assembly of conducting multilayer film from poly(sodium styrenesulfonate) and polyaniline. Journal of Colloid and Interface Science, 2009, 337, 155-161.	5.0	22
432	A simple route to interpenetrating network hydrogel with high mechanical strength. Journal of Colloid and Interface Science, 2009, 339, 45-52.	5.0	51

#	Article	IF	CITATIONS
433	Polyacrylamide-controlled growth of centimeter-scaled polyaniline fibers. Polymer, 2009, 50, 752-755.	1.8	23
434	Fabrication of a high-strength hydrogel with an interpenetrating network structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 91-98.	2.3	56
435	Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 177-183.	2.3	69
436	Shape and Size Control of Oriented Polyaniline Microstructure by a Self-Assembly Method. Langmuir, 2009, 25, 5253-5257.	1.6	73
437	A multifunctional poly(acrylic acid)/gelatin hydrogel. Journal of Materials Research, 2009, 24, 1653-1661.	1.2	24
438	Crystallization degree change of expanded graphite by milling and annealing. Journal of Alloys and Compounds, 2009, 475, 429-433.	2.8	23
439	Templateless self-assembly of highly oriented polyaniline arrays. Chemical Communications, 2009, , 2166.	2.2	31
440	Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions. Science and Technology of Advanced Materials, 2009, 10, 015002.	2.8	47
441	Template-free synthesis of closed-microporous hybrid and its application in quasi-solid-state dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 524.	15.6	66
442	A simple route to high-strength hydrogel with an interpenetrating polymer network. E-Polymers, 2009, 9, .	1.3	2
443	Synthesis, structure, properties and a theoretical study of [ZnCl ₂ (4,4'-bipy)] _{<i>n</i>} . Journal of Chemical Research, 2009, 2009, 38-40.	0.6	0
444	Bis(μ-N,N-dimethyldithiocarbamato-κ3S,S′:S)bis[(N,N-dimethyldithiocarbamato-κ2S,S′)copper(II)]. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m319-m319.	0.2	2
445	(N,N-Diethyldithiocarbamato-κ2S,S′)iodido(1,10-phenanthroline-κ2N,N′)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m1209-m1209.	0.2	1
446	Influence of ionic additives Nal/I2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 2296-2301.	2.6	42
447	Two-step synthesis of polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network hydrogel and its swelling, conducting and mechanical properties. Journal of Materials Science, 2008, 43, 5898-5904.	1.7	38
448	Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties. Journal of Materials Science, 2008, 43, 5884-5890.	1.7	39
449	Syntheses and Crystal Structures of Two New Openâ€Framework Tin(II) Phosphates: Sn ₅ O ₂ (PO ₄) ₂ and Sn ₄ O(PO ₄) ₂ . Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2008. 634. 534-538.	0.6	7
450	The preparation and electrical conductivity of polyacrylamide/graphite conducting hydrogel. Journal of Applied Polymer Science, 2008, 108, 1490-1495.	1.3	26

#	Article	IF	CITATIONS
451	Synthesis, characterization, and properties of polypyrrole/expanded vermiculite intercalated nanocomposite. Journal of Applied Polymer Science, 2008, 110, 2862-2866.	1.3	16
452	High conducting multilayer films from poly(sodium styrenesulfonate) and graphite nanoplatelets by layer-by-layer self-assembly. Polymer, 2008, 49, 5329-5335.	1.8	32
453	Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 2008, 49, 5262-5267.	1.8	61
454	High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2008, 181, 172-176.	4.0	424
455	Synthesis, structure, and physical properties of [Sm(C6NO2H5)3(H2O)2]2n.(H5O2)n(ZnCl5)n(ZnCl4)2n.(H2O)2n with unprecedented ZnCl53â^' species. Journal of Solid State Chemistry, 2008, 181, 1853-1858.	1.4	9
456	Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments, 2008, 77, 327-334.	2.0	373
457	Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1299-1302.	2.3	457
458	A multifunctional hydrogel with high conductivity, pH-responsive, thermo-responsive and release properties from polyacrylate/polyaniline hybrid. Carbohydrate Polymers, 2008, 73, 315-321.	5.1	64
459	Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydrate Polymers, 2008, 73, 473-481.	5.1	87
460	Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydrate Polymers, 2008, 74, 215-219.	5.1	124
461	Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochimica Acta, 2008, 53, 4161-4166.	2.6	76
462	Synthesis and photochemical properties of La-doped HCa2Nb3O10. International Journal of Hydrogen Energy, 2008, 33, 6432-6438.	3.8	24
463	The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Materials Chemistry and Physics, 2008, 110, 38-42.	2.0	160
464	Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 2008, 80, 2241-2258.	0.9	234
465	Crystal Morphology of Anatase Titania Nanocrystals Used in Dye-Sensitized Solar Cells. Crystal Growth and Design, 2008, 8, 247-252.	1.4	83
466	An All-Solid-State Dye-Sensitized Solar Cell-Based Poly(<i>N</i> -alkyl-4-vinyl-pyridine iodide) Electrolyte with Efficiency of 5.64%. Journal of the American Chemical Society, 2008, 130, 11568-11569.	6.6	243
467	Synthesis and photocatalytic property of triple-layered perovskite compounds, A2Ca4TaxNb6â^'xO20 (A=K, H; x=0, 2, 3, 4, and 6). Journal of Alloys and Compounds, 2008, 453, 437-441.	2.8	9
468	Hydrothermal synthesis of K2La2Ti3O10 and photocatalytic splitting of water. Journal of Alloys and Compounds, 2008, 456, 364-367.	2.8	26

#	Article	IF	CITATIONS
469	Conducting Film from Graphite Oxide Nanoplatelets and Poly(acrylic acid) by Layer-by-Layer Self-Assembly. Langmuir, 2008, 24, 4800-4805.	1.6	90
470	Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite. Science and Technology of Advanced Materials, 2008, 9, 025010.	2.8	12
471	A high mechanical strength hydrogel from polyacrylamide/polyacrylamide with interpenetrating network structure by two-steps synthesis method. E-Polymers, 2008, 8, .	1.3	2
472	Crystal structure of bis(\$2-chloro)-tris(triphenylphosphine)dicopper(I) dimethylformamide solvate, Cu2Cl2[P(C6H5)3]3 ·C3H7NO. Zeitschrift Fur Kristallographie - New Crystal Structures, 2008, 223, 349-351.	0.1	1
473	(2,2′-Bipyridine-κ2N,N′)iodido(pyrrolidine-1-dithiocarboxylato-κ2S,S′)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m639-m639.	0.2	2
474	Fabrication and Photocatalytic Properties of HLaNb2O7/(Pt, Fe2O3) Pillared Nanomaterial. Journal of Physical Chemistry C, 2007, 111, 3624-3628.	1.5	43
475	Preparation and Conductivity of Polyaniline/Sio ₂ Composites. Polymers and Polymer Composites, 2007, 15, 605-610.	1.0	2
476	A Conductive Hydrogel by Poly(Sodium Acrylate)/Montmorillonite Superabsorbent Composite. Polymers and Polymer Composites, 2007, 15, 29-33.	1.0	10
477	Preparation and water absorbency of a novel poly(acrylate-co-acrylamide)/vermiculite superabsorbent composite. Journal of Applied Polymer Science, 2007, 104, 735-739.	1.3	45
478	Quasi-solid-state dye-sensitized solar cells based on a sol–gel organic–inorganic composite electrolyte containing an organic iodide salt. Solar Energy, 2007, 81, 117-122.	2.9	40
479	Two-steps synthesis of a poly(acrylate–aniline) conducting hydrogel with an interpenetrated networks structure. Carbohydrate Polymers, 2007, 67, 332-336.	5.1	67
480	A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells. Electrochimica Acta, 2007, 52, 5334-5338.	2.6	81
481	Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2007, 52, 7128-7135.	2.6	45
482	Cu[(PPh3)2O](acac): Cu+ charge-compensated by a coordinating acacâ^' anion. Inorganic Chemistry Communication, 2007, 10, 1561-1564.	1.8	6
483	Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2007, 52, 6673-6678.	2.6	62
484	The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature. Electrochimica Acta, 2007, 53, 903-908.	2.6	43
485	Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. European Polymer Journal, 2007, 43, 2214-2220.	2.6	65
486	Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources, 2007, 173, 585-591.	4.0	72

#	Article	IF	CITATIONS
487	The synthesis and electrical conductivity of a polyacrylate/graphite hydrogel. Reactive and Functional Polymers, 2007, 67, 275-281.	2.0	49
488	The synthesis and electrical conductivity of a polyacrylamide/Cu conducting hydrogel. Reactive and Functional Polymers, 2007, 67, 489-494.	2.0	44
489	The layered compound poly[μ2-4,4′-bipyridyl-di-μ2-chlorido-mercury(II)]. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m220-m221.	0.4	10
490	(Dimethyldithiocarbamato-κ2S,S′)iodido(1,10-phenanthroline-κ2N,N′)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1768-m1768.	0.2	1
491	NH ₄ PbI ₃ . Acta Crystallographica Section E: Structure Reports Online, 2007, 63, i189-i189.	0.2	27
492	Synthesis and photocatalytic activity of hydrated layered perovskite K2â^'xLa2Ti3â^'xNbxO10 (0⩽x⩽1) an protonated derivatives. Scripta Materialia, 2007, 57, 437-440.	d _{2.6}	17
493	Synthesis and Inhibition Efficiency of a Novel Quadripolymer Inhibitor. Chinese Journal of Chemical Engineering, 2007, 15, 600-605.	1.7	25
494	Preparation of a novel polymer gel electrolyte based on N-methyl-quinoline iodide and its application in quasi-solid-state dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 2007, 42, 65-70.	1.1	18
495	Photocatalytic intercalated material based on HLaNb2O7 as host and Cd0.8Zn0.2S as guest. Science in China Series B: Chemistry, 2007, 50, 514-519.	0.8	9
496	Quasi-solid-state dye-sensitized solar cells with a novel efficient absorbent for liquid electrolyte based on PAA–PEG hybrid. Journal of Power Sources, 2007, 164, 921-925.	4.0	51
497	Preparation and characterization of a novel hybrid magnetic semiconductor containing rare, one-dimensional mixed-iodide/chloride anion of lead(II). Journal of Solid State Chemistry, 2007, 180, 3479-3484.	1.4	19
498	catena-Poly[[diiodozinc(II)]-μ-4,4′-bipyridine-κ2N:N′]. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m548-m549.	0.4	1
499	(2,2′-Bipyridine-κ2N,N′)(N,N-diethyldithiocarbamato-κ2S,S′)iodocopper(II). Acta Crystallographica Sectio Structure Reports Online, 2006, 62, m2891-m2892.	n E: 0.2	0
500	(N,N-Dimethyldithiocarbamato-l̂º2S,S′)iodo(1,10-phenanthroline-l̂º2N,N′)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m3208-m3209.	0.2	3
501	Swelling behavior of poly(sodium acrylate)/kaoline superabsorbent composite. Polymer Engineering and Science, 2006, 46, 324-328.	1.5	14
502	Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochimica Acta, 2006, 51, 4243-4249.	2.6	116
503	Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 167-174.	2.3	39
504	Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)–poly(ethylene glycol) composite. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 333-337.	2.0	71

#	Article	IF	CITATIONS
505	Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 2006, 80, 209-214.	2.9	509
506	Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2. Solar Energy, 2006, 80, 1483-1488.	2.9	97
507	Synthesis and photocatalytic properties of H2La2Ti3O10/TiO2 intercalated nanomaterial. Journal of Porous Materials, 2006, 13, 55-59.	1.3	12
508	Modification of photocathode of dye-sensitized nanocrystalline solar cell with platinum by vacuum coating, thermal decomposition and electroplating. Composite Interfaces, 2006, 13, 899-909.	1.3	24
509	Synthesis and Photocatalytic Properties of HTaWO6 Intercalated with Oxide Materials. Journal of Porous Materials, 2005, 12, 23-27.	1.3	4
510	Study of microstructure and properties of HEC-g-AA/SiO2 organic-inorganic hybrid materials. Composite Interfaces, 2004, 11, 271-276.	1.3	13
511	Synthesis and photochemical properties of HTaWO6/ (Pt, TiO2) nanocomposite under visible light irradiation. Composite Interfaces, 2004, 11, 195-204.	1.3	1
512	Interface effect in the silicone rubber/mineral powder composites. Composite Interfaces, 2004, 11, 145-152.	1.3	2
513	Synthesis and photocatalytic properties of layered intercalated materials HTaWO6/(Pt, Cd0.8Zn0.2S). Scripta Materialia, 2004, 50, 465-469.	2.6	16
514	The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell. Solar Energy, 2004, 76, 745-750.	2.9	91
515	Preparation and characterization of nanocomposite materials consisting of molybdenum disulfide and cobalt(ii) coordination complexes. Journal of Materials Chemistry, 2004, 14, 2001.	6.7	32
516	Preparation of (KBr-KCl)(OHâ^'):(F2+)H color center laser crystal series and their spectral characteristics. Crystal Research and Technology, 2003, 38, 1052-1057.	0.6	0
517	Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer, 2003, 44, 6513-6520.	1.8	252
518	Preparation of modified ultra-fine mineral powder and interaction between mineral filler and silicone rubber. Journal of Materials Processing Technology, 2003, 137, 40-44.	3.1	12
519	Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. Journal of Materials Processing Technology, 2003, 137, 45-48.	3.1	66
520	Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polymer International, 2003, 52, 1909-1912.	1.6	50
521	The Influence of Physical Morphology of Mineral Powder on the Reinforcing Effect in Silicone Rubber. Polymers and Polymer Composites, 2003, 11, 415-417.	1.0	0
522	Synthesis of HTaWO6/(Pt, TiO2) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction. Solid State Ionics, 2002, 151, 377-383.	1.3	22

#	Article	IF	CITATIONS
523	Preparation of NaCl color center laser crystals and perturbation effect of ions. Journal of Crystal Growth, 2002, 240, 495-500.	0.7	3
524	Synthesis and photocatalytic properties of layered HNbWO6/(Pt, Cd0.8Zn0.2S) nanocomposites. Journal of Materials Chemistry, 2001, 11, 3343-3347.	6.7	58
525	Synthesis and Properties of Poly(Acrylic Acid)/Montmorillonite Superabsorbent Composites. Polymers and Polymer Composites, 2001, 9, 469-472.	1.0	16
526	Interactions between Surface Treated Ultrafine Mineral Filler and Silicone Rubber Matrix. Polymers and Polymer Composites, 2001, 9, 169-174.	1.0	2
527	Influence of the COOH and COONa groups and crosslink density of poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Over 50, 1050-1053.	lock 10 Tf 1.6	50 587 To 124
528	Synthesis and Properties of Poly(acrylic acid)/Mica Superabsorbent Nanocomposite. Macromolecular Rapid Communications, 2001, 22, 422-424.	2.0	253
529	Hydrothermal synthesis of HNbWO6/MO series nanocomposites and their photocatalytic properties. Journal of Materials Science, 2001, 36, 3055-3059.	1.7	10
530	Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromolecular Rapid Communications, 2000, 21, 1032-1034.	2.0	218
531	Study on Bound Rubber in Silicone Rubber Filled with Modified Ultrafine Mineral Powder. Rubber Chemistry and Technology, 2000, 73, 19-24.	0.6	10
532	Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128, 129-133.	2.0	35
533	Surface Energy of Mineral Powders and Interaction Between Silicone Rubber Matrix and Mineral Filler. Journal of Materials Science Letters, 1999, 18, 461-462.	0.5	11
534	Synthesis and photocatalytic properties of HTaWO6/(Pt,TiO2) and HTaWO6/(Pt,Fe2O3) nanocomposites. Solid State Sciences, 1999, 1, 253-258.	0.8	22
535	Improvement of Quasi-Solid-State Supercapacitors Based on "Water-in-Salt―Hydrogel Electrolyte by Introducing Redox-Active Ionic Liquid and Carbon Nanotubes. New Journal of Chemistry, 0, , .	1.4	3
536	Potassium oleate as an effective interface modifier for defect passivation in planar perovskite solar cells. Functional Materials Letters, 0, , .	0.7	1