Michail Sitkovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094688/publications.pdf

Version: 2024-02-01

44 papers 6,653 citations

30 h-index 243625 44 g-index

44 all docs

44 docs citations

times ranked

44

7722 citing authors

#	Article	IF	CITATIONS
1	Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature, 2001, 414, 916-920.	27.8	1,217
2	A2A adenosine receptor protects tumors from antitumor T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13132-13137.	7.1	837
3	Animal Models of sepsis: setting the stage. Nature Reviews Drug Discovery, 2005, 4, 854-865.	46.4	673
4	Regulation of immune cells by local-tissue oxygen tension: HIF1 \hat{l}_{\pm} and adenosine receptors. Nature Reviews Immunology, 2005, 5, 712-721.	22.7	480
5	Role of A2a Extracellular Adenosine Receptor-Mediated Signaling in Adenosine-Mediated Inhibition of T-Cell Activation and Expansion. Blood, 1997, 90, 1600-1610.	1.4	434
6	The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Frontiers in Immunology, 2012, 3, 190.	4.8	306
7	Extracellular Adenosine-Mediated Modulation of Regulatory T Cells. Frontiers in Immunology, 2014, 5, 304.	4.8	239
8	Cutting Edge: Hypoxia-Inducible Factor $1\hat{l}_{\pm}$ and Its Activation-Inducible Short Isoform I.1 Negatively Regulate Functions of CD4+ and CD8+ T Lymphocytes. Journal of Immunology, 2006, 177, 4962-4965.	0.8	203
9	Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 41-51.	8.0	189
10	A2A Adenosine Receptor May Allow Expansion of T Cells Lacking Effector Functions in Extracellular Adenosine-Rich Microenvironments. Journal of Immunology, 2009, 183, 5487-5493.	0.8	171
11	Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. Journal of Molecular Medicine, 2014, 92, 1283-1292.	3.9	159
12	Gs Protein-Coupled Adenosine Receptor Signaling and Lytic Function of Activated NK Cells. Journal of Immunology, 2005, 175, 4383-4391.	0.8	145
13	Cutting Edge: Physiologic Attenuation of Proinflammatory Transcription by the Gs Protein-Coupled A2A Adenosine Receptor In Vivo. Journal of Immunology, 2004, 173, 21-24.	0.8	143
14	Requirements for T Lymphocyte Migration in Explanted Lymph Nodes. Journal of Immunology, 2007, 178, 7747-7755.	0.8	127
15	A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Current Opinion in Pharmacology, 2016, 29, 90-96.	3 . 5	121
16	A2A Adenosine Receptor Gene Deletion or Synthetic A2A Antagonist Liberate Tumor-Reactive CD8+ T Cells from Tumor-Induced Immunosuppression. Journal of Immunology, 2018, 201, 782-791.	0.8	101
17	Germinal Center Hypoxia Potentiates Immunoglobulin Class Switch Recombination. Journal of Immunology, 2016, 197, 4014-4020.	0.8	92
18	Differential Regulation of Two Alternatively Spliced Isoforms of Hypoxia-inducible Factor- $1\hat{l}\pm$ in Activated T Lymphocytes. Journal of Biological Chemistry, 2001, 276, 48754-48763.	3.4	91

#	Article	IF	Citations
19	A2B Adenosine Receptor Blockade Enhances Macrophage-Mediated Bacterial Phagocytosis and Improves Polymicrobial Sepsis Survival in Mice. Journal of Immunology, 2011, 186, 2444-2453.	0.8	88
20	Cell-mediated cytotoxicity: contact and secreted factors. Current Opinion in Immunology, 1993, 5, 404-410.	5.5	72
21	The A2aR adenosine receptor controls cytokine production in iNKT cells. European Journal of Immunology, 2010, 40, 682-687.	2.9	72
22	1,3,7-Trimethylxanthine (Caffeine) May Exacerbate Acute Inflammatory Liver Injury by Weakening the Physiological Immunosuppressive Mechanism. Journal of Immunology, 2007, 179, 7431-7438.	0.8	69
23	Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice. Biochemical Journal, 2001, 354, 123-130.	3.7	68
24	In vivo T Cell Activation in Lymphoid Tissues is Inhibited in the Oxygen-Poor Microenvironment. Frontiers in Immunology, 2011, 2, 27.	4.8	66
25	The adenosinergic immunomodulatory drugs. Current Opinion in Pharmacology, 2009, 9, 501-506.	3.5	44
26	Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. Journal of Molecular Medicine, 2013, 91, 147-155.	3.9	38
27	Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible. International Immunology, 2014, 26, 83-91.	4.0	35
28	Sphingosine-1-Phosphate Reduces CD4+ T-Cell Activation in Type 1 Diabetes Through Regulation of Hypoxia-Inducible Factor Short Isoform I.1 and CD69. Diabetes, 2008, 57, 484-493.	0.6	34
29	Pulmonary Natural Killer T Cells Play an Essential Role in Mediating Hyperoxic Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 601-609.	2.9	33
30	TSGA10 prevents nuclear localization of the hypoxia-inducible factor (HIF)-1α. FEBS Letters, 2006, 580, 3731-3738.	2.8	30
31	From â€~Hellstrom Paradox–to anti-adenosinergic cancer immunotherapy. Purinergic Signalling, 2007, 3, 129-134.	2.2	30
32	Oxygenation to improve cancer vaccines, adoptive cell transfer and blockade of immunological negative regulators. Oncolmmunology, 2015, 4, e1052934.	4.6	26
33	Therapeutic effects of adenosine in high flow 21% oxygen aereosol in patients with Covid19-pneumonia. PLoS ONE, 2020, 15, e0239692.	2.5	26
34	Mechanistic Justifications of Systemic Therapeutic Oxygenation of Tumors to Weaken the Hypoxia Inducible Factor 1î±-Mediated Immunosuppression. Advances in Experimental Medicine and Biology, 2019, 1136, 113-121.	1.6	25
35	Preferential expression of the novel alternative isoform I.3 of hypoxia-inducible factor $1\hat{l}_{\pm}$ in activated human T lymphocytes. Human Immunology, 2008, 69, 421-425.	2.4	24
36	A2B Adenosine Receptor Expression by Myeloid Cells Is Proinflammatory in Murine Allergic-Airway Inflammation. Journal of Immunology, 2012, 189, 3707-3713.	0.8	24

#	Article	IF	CITATIONS
37	Targeting hypoxia?A2A adenosine receptor-mediated mechanisms of tissue protection. Drug Discovery Today, 2004, 9, 403-409.	6.4	22
38	The GS Protein-coupled A2a Adenosine Receptor Controls T Cell Help in the Germinal Center. Journal of Biological Chemistry, 2017, 292, 1211-1217.	3.4	22
39	Postoperative Hyperoxia (60%) Worsens Hepatic Injury in Mice. Anesthesiology, 2014, 121, 1217-1225.	2.5	18
40	An efficient route to xanthine based A2A adenosine receptor antagonists and functional derivatives. Organic and Biomolecular Chemistry, 2010, 8, 4155.	2.8	17
41	The antihypoxia–adenosinergic pathogenesis as a result of collateral damage by overactive immune cells. Journal of Leukocyte Biology, 2009, 86, 545-548.	3.3	13
42	Extracellular adenosine controls NKTâ€cellâ€dependent hepatitis induction. European Journal of Immunology, 2014, 44, 1119-1129.	2.9	12
43	Design and evaluation of xanthine based adenosine receptor antagonists: Potential hypoxia targeted immunotherapies. Bioorganic and Medicinal Chemistry, 2013, 21, 7453-7464.	3.0	10
44	Studies of expression and possible functional role of purinergic receptors in cell-mediated immunity: Experimental approaches, controls, and caveats. Drug Development Research, 1998, 45, 229-244.	2.9	7