Huiyu Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Scientific Reports, 2013, 3, .	3.3	514
2	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catalysis, 2014, 4, 3797-3805.	11.2	351
3	Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 1575-1583.	13.7	348
4	Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid‣tate Electrolytes. Advanced Energy Materials, 2021, 11, 2000779.	19.5	188
5	Hierarchically Porous, Ultrathick, "Breathable―Woodâ€Derived Cathode for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1701203.	19.5	161
6	Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 6165-6174.	11.2	130
7	A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2017, 5, 5829-5837.	10.3	93
8	Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. Advanced Materials, 2018, 30, 1704907.	21.0	92
9	Pd nanoparticles decorating flower-like Co ₃ O ₄ nanowire clusters to form an efficient, carbon/binder-free cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 15626-15632.	10.3	67
10	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 32168-32178.	8.0	63
11	MOF-Templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li–O2 battery cathode. Journal of Power Sources, 2020, 450, 227725.	7.8	62
12	Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 12240-12246.	10.3	52
13	A Co-doped porous niobium nitride nanogrid as an effective oxygen reduction catalyst. Journal of Materials Chemistry A, 2017, 5, 14278-14285.	10.3	51
14	Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst. International Journal of Hydrogen Energy, 2010, 35, 7874-7880.	7.1	50
15	Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine. Applied Catalysis B: Environmental, 2014, 158-159, 60-69.	20.2	49
16	Template-Free Preparation of 3D Porous Co-Doped VN Nanosheet-Assembled Microflowers with Enhanced Oxygen Reduction Activity. ACS Applied Materials & Interfaces, 2018, 10, 11604-11612.	8.0	47
17	Recent advances in nanostructured transition metal nitrides for fuel cells. Journal of Materials Chemistry A, 2020, 8, 20803-20818.	10.3	45
18	A renewable wood-derived cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018. 6. 14291-14298.	10.3	38

Huiyu Song

#	Article	IF	CITATIONS
19	High performance LiFePO4 microsphere composed of nanofibers with an alcohol-thermal approach. Journal of Materials Chemistry A, 2013, 1, 4546.	10.3	35
20	Co ₄ Nâ€Decorated 3D Woodâ€Derived Carbon Host Enables Enhanced Cathodic Electrocatalysis and Homogeneous Lithium Deposition for Lithium–Sulfur Full Cells. Small, 2022, 18, e2105664.	10.0	34
21	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	8.0	33
22	A biocompatible drug delivery nanovalve system on the surface of mesoporous nanoparticles. Microporous and Mesoporous Materials, 2012, 147, 200-204.	4.4	32
23	High-performance self-humidifying membrane electrode assembly prepared byÂsimultaneously adding inorganic and organic hygroscopic materials to the anode catalyst layer. Journal of Power Sources, 2013, 241, 367-372.	7.8	26
24	Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Scientific Reports, 2015, 5, 11604.	3.3	21
25	Nanoconfined Nitrogenâ€Doped Carbonâ€Coated Hierarchical TiCoN Composites with Enhanced ORR Performance. ChemElectroChem, 2018, 5, 2041-2049.	3.4	19
26	Facile Room-Temperature Synthesis of a Highly Active and Robust Single-Crystal Pt Multipod Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 49510-49518.	8.0	17
27	Three dimensional palladium nanoflowers with enhanced electrocatalytic activity towards the anodic oxidation of formic acid. Journal of Materials Chemistry A, 2015, 3, 973-977.	10.3	16
28	Robust InNCo _{3–<i>x</i>} Mn <i>_{<i>x</i>}</i> Nitride-Supported Pt Nanoparticles as High-Performance Bifunctional Electrocatalysts for Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 5293-5300.	5.1	13
29	Recent Advances and Perspectives in Lithiumâ [~] Sulfur Pouch Cells. Molecules, 2021, 26, 6341.	3.8	12
30	Immobilization of highly active Pd nano-catalysts on functionalized mesoporous silica supports using mercapto groups as anchoring sites and their catalytic performance for phenol hydrogenation. Chinese Journal of Catalysis, 2013, 34, 1519-1526.	14.0	11
31	Spinel LiMn ₂ O ₄ Nanoparticles Grown in Situ on Nitrogen-Doped Reduced Graphene Oxide as an Efficient Cathode for a Li-O ₂ /Li-Ion Twin Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 430-439.	6.7	11
32	Robust and Efficient Pd–Cu Bimetallic Catalysts with Porous Structure for Formic Acid Oxidation and a Mechanistic Study of Electrochemical Dealloying. Electrocatalysis, 2021, 12, 117-126.	3.0	10
33	Ultrafast Carbothermal Shock Constructing Ni ₃ Fe _{1–<i>x</i>} Cr _{<i>x</i>} Intermetallic Integrated Electrodes for Efficient and Durable Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 19524-19533.	8.0	10
34	Effects of tailoring and dehydrated cross-linking on morphology evolution of ordered mesoporous carbons. RSC Advances, 2016, 6, 19515-19521.	3.6	9
35	MOF-Derived Carbon Materials Mounted with Highly Dispersed Ru and MoO ₃ for Rechargeable Li–O ₂ Cathode Yield Enhanced Cyclability. ACS Sustainable Chemistry and Engineering, 2019, 7, 2296-2303.	6.7	9
36	Highâ€Performance 3D Pinecone‣ike LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode for Lithium″on Batteries. Energy Technology, 2019, 7, 1800769.	3.8	8

Huiyu Song

#	Article	IF	CITATIONS
37	Yucca-like CoO–CoN Nanoarray with Abundant Oxygen Vacancies as a High-Performance Cathode for Lithium–Oxygen Batteries. ACS Applied Energy Materials, 2020, 3, 12000-12008.	5.1	8
38	Biogelatin-Derived and N,S-Codoped 3D Network Carbon Materials Anchored with RuO ₂ as an Efficient Cathode for Rechargeable Li–O ₂ Batteries. Journal of Physical Chemistry C, 2021, 125, 21914-21921.	3.1	7
39	Design of a Multispherical Cavity Carbon with In Situ Silica Modifications and Its Selfâ€Humidification Application on Fuel Cell Anode Support. Advanced Materials Interfaces, 2018, 5, 1800314.	3.7	6
40	Enhanced durability and self-humidification of platinum catalyst through decoration with SnSi binary oxide. Journal of Applied Electrochemistry, 2018, 48, 1163-1173.	2.9	5
41	Stable and active Pt colloid preparation by modified citrate reduction and a mechanism analysis of inorganic additives. Journal of Colloid and Interface Science, 2020, 572, 74-82.	9.4	3
42	An Efficient Bifunctional Electrocatalyst of Phosphorous Carbon Co-doped MOFs. Nanoscale Research Letters, 2020, 15, 169.	5.7	3
43	Facile synthesis of high dispersion γ-Fe2O3–Au nanoparticles within mesoporous silica spheres. RSC Advances, 2015, 5, 49914-49919.	3.6	2
44	An efficient carbon catalyst supports with mesoporous graphene-like morphology. Journal of Porous Materials, 2018, 25, 913-921.	2.6	2
45	Enhanced performance of LiNi0.03Mo0.01Mn1.96O4 cathode materials coated with biomass-derived carbon layer. Ionics, 2019, 25, 917-925.	2.4	2
46	Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 154-159.	0.4	1