David Landsman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094546/publications.pdf

Version: 2024-02-01

109321 46799 8,809 113 35 89 citations h-index g-index papers 124 124 124 11446 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mediator dynamics during heat shock in budding yeast. Genome Research, 2022, 32, 111-123.	5.5	3
2	DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Research, 2022, 50, 1864-1874.	14.5	25
3	Multiple epigenetic factors co-localize with HMGN proteins in A-compartment chromatin. Epigenetics and Chromatin, 2022, $15,\ldots$	3.9	5
4	COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Research, 2021, 49, D274-D281.	14.5	441
5	Histone tails as signaling antennas of chromatin. Current Opinion in Structural Biology, 2021, 67, 153-160.	5.7	32
6	Human Histone Interaction Networks: An Old Concept, New Trends. Journal of Molecular Biology, 2021, 433, 166684.	4.2	4
7	PM4NGS, a project management framework for next-generation sequencing data analysis. GigaScience, 2021, 10, .	6.4	O
8	Transcriptome annotation in the cloud: complexity, best practices, and cost. GigaScience, 2021, 10, .	6.4	9
9	A model of active transcription hubs that unifies the roles of active promoters and enhancers. Nucleic Acids Research, 2021, 49, 4493-4505.	14.5	27
10	Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nature Communications, 2021, 12, 5280.	12.8	43
11	Data sets on human histone interaction networks. Data in Brief, 2020, 33, 106555.	1.0	1
12	Kin28 depletion increases association of TFIID subunits Taf1 and Taf4 with promoters in Saccharomyces cerevisiae. Nucleic Acids Research, 2020, 48, 4244-4255.	14.5	9
13	BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks. Epigenetics and Chromatin, 2020, 13, 21.	3.9	40
14	Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. BMC Genomics, 2019, 20, 378.	2.8	31
15	Molecular recognition of nucleosomes by binding partners. Current Opinion in Structural Biology, 2019, 56, 164-170.	5.7	21
16	TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics, 2019, 35, 1960-1962.	4.1	149
17	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2018, 46, D8-D13.	14.5	1,291
18	SNPDelScore: combining multiple methods to score deleterious effects of noncoding mutations in the human genome. Bioinformatics, 2018, 34, 289-291.	4.1	11

#	Article	lF	Citations
19	Binding of HMGN proteins to cell specific enhancers stabilizes cell identity. Nature Communications, 2018, 9, 5240.	12.8	32
20	Structural interpretation of DNA–protein hydroxyl-radical footprinting experiments with high resolution using HYDROID. Nature Protocols, 2018, 13, 2535-2556.	12.0	6
21	A Genome-Wide Screen Reveals a Role for the HIR Histone Chaperone Complex in Preventing Mislocalization of Budding Yeast CENP-A. Genetics, 2018, 210, 203-218.	2.9	20
22	The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genetics, 2018, 14, e1007232.	3. 5	13
23	Role of the pre-initiation complex in Mediator recruitment and dynamics. ELife, 2018, 7, .	6.0	30
24	Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres. Genes and Development, 2017, 31, 1958-1972.	5.9	45
25	Workflow and web application for annotating NCBI BioProject transcriptome data. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	3.0	6
26	MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics and Chromatin, 2017, 10, 2.	3.9	40
27	Hydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning. Nucleic Acids Research, 2017, 45, 9229-9243.	14.5	18
28	Whole-Genome Sequence of Multidrug-Resistant $\langle i \rangle$ Campylobacter coli $\langle i \rangle$ Strain COL B1-266, Isolated from the Colombian Poultry Chain. Genome Announcements, 2016, 4, .	0.8	1
29	Quantifying deleterious effects of regulatory variants. Nucleic Acids Research, 2016, 45, gkw1263.	14.5	14
30	HistoneDB 2.0: a histone database with variantsâ€"an integrated resource to explore histones and their variants. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw014.	3.0	99
31	Whole-Genome Sequences of Two Campylobacter coli Isolates from the Antimicrobial Resistance Monitoring Program in Colombia. Genome Announcements, 2016, 4, .	0.8	1
32	Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006. Genome Announcements, 2016, 4, .	0.8	10
33	Trajectories of microsecond molecular dynamics simulations of nucleosomes and nucleosome core particles. Data in Brief, 2016, 7, 1678-1681.	1.0	3
34	HMGN proteins modulate chromatin regulatory sites and gene expression during activation of na \tilde{A} -ve B cells. Nucleic Acids Research, 2016, 44, gkw323.	14.5	11
35	Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules. BMC Bioinformatics, 2016, 17, 479.	2.6	1
36	Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. Journal of Molecular Biology, 2016, 428, 221-237.	4.2	131

#	Article	IF	Citations
37	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	3.0	8
38	Genome-Wide Association of Mediator and RNA Polymerase II in Wild-Type and Mediator Mutant Yeast. Molecular and Cellular Biology, 2015, 35, 331-342.	2.3	48
39	Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers. Plant Gene, 2015, 4, 29-37.	2.3	30
40	Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006. Genome Announcements, 2015, 3, .	0.8	11
41	Functional compensation among HMGN variants modulates the DNase I hypersensitive sites at enhancers. Genome Research, 2015, 25, 1295-1308.	5.5	38
42	Nucleosome adaptability conferred by sequence and structural variations in histone H2A–H2B dimers. Current Opinion in Structural Biology, 2015, 32, 48-57.	5.7	52
43	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	2.6	13
44	Genome Sequences of Multidrug-Resistant Salmonella enterica Serovar Paratyphi B (dT+) and Heidelberg Strains from the Colombian Poultry Chain. Genome Announcements, 2015, 3, .	0.8	7
45	Log-odds sequence logos. Bioinformatics, 2015, 31, 324-331.	4.1	14
46	Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Research, 2014, 24, 1613-1623.	5.5	83
47	HMGN1 Modulates Nucleosome Occupancy and DNase I Hypersensitivity at the CpG Island Promoters of Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 3377-3389.	2.3	68
48	Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem. PLoS ONE, 2013, 8, e68500.	2.5	30
49	Differences in local genomic context of bound and unbound motifs. Gene, 2012, 506, 125-134.	2.2	3
50	The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genomics, 2012, 13, 151.	2.8	52
51	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	3.9	265
52	Analysis of Biological Features Associated with Meiotic Recombination Hot and Cold Spots in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e29711.	2.5	20
53	Towards BioDBcore: a community-defined information specification for biological databases. Database: the Journal of Biological Databases and Curation, 2011, 2011, baq027-baq027.	3.0	30
54	Towards BioDBcore: a community-defined information specification for biological databases. Nucleic Acids Research, 2011, 39, D7-D10.	14.5	32

#	Article	IF	Citations
55	Genome Sequence of the Mycobacterium colombiense Type Strain, CECT 3035. Journal of Bacteriology, 2011, 193, 5866-5867.	2.2	7
56	Effects of HMGN variants on the cellular transcription profile. Nucleic Acids Research, 2011, 39, 4076-4087.	14.5	38
57	Ten Simple Rules for Developing a Short Bioinformatics Training Course. PLoS Computational Biology, 2011, 7, e1002245.	3.2	29
58	The Histone Database: an integrated resource for histones and histone fold-containing proteins. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar048-bar048.	3.0	40
59	DATABASE: A new forum for biological databases and curation. Database: the Journal of Biological Databases and Curation, 2010, 2009, bap002-bap002.	3.0	10
60	Many sequence-specific chromatin modifying protein-binding motifs show strong positional preferences for potential regulatory regions in the Saccharomyces cerevisiae genome. Nucleic Acids Research, 2010, 38, 1772-1779.	14.5	21
61	Repetitive DNA elements, nucleosome binding and human gene expression. Gene, 2009, 436, 12-22.	2.2	32
62	Identification of cis-Regulatory Elements in Gene Co-expression Networks Using A-GLAM. Methods in Molecular Biology, 2009, 541, 3-22.	0.9	14
63	Promoter Analysis: Gene Regulatory Motif Identification with A-GLAM. Methods in Molecular Biology, 2009, 537, 263-276.	0.9	7
64	The biological function of some human transcription factor binding motifs varies with position relative to the transcription start site. Nucleic Acids Research, 2008, 36, 2777-2786.	14.5	19
65	Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates. PLoS ONE, 2008, 3, e3599.	2.5	20
66	Multiple Evolutionary Solutions to Core Histone Gene Regulation. FASEB Journal, 2007, 21, A1033.	0.5	0
67	Multiple independent evolutionary solutions to core histone gene regulation. Genome Biology, 2006, 7, R122.	9.6	47
68	Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements. BMC Bioinformatics, 2006, 7, 408.	2.6	2
69	The histone database: A comprehensive resource for histones and histone fold-containing proteins. Proteins: Structure, Function and Bioinformatics, 2005, 62, 838-842.	2.6	51
70	Alignments anchored on genomic landmarks can aid in the identification of regulatory elements. Bioinformatics, 2005, 21, i440-i448.	4.1	30
71	Global Regulation by the Yeast Spt10 Protein Is Mediated through Chromatin Structure and the Histone Upstream Activating Sequence Elements. Molecular and Cellular Biology, 2005, 25, 9127-9137.	2.3	58
72	Histone structure and nucleosome stability. Expert Review of Proteomics, 2005, 2, 719-729.	3.0	237

#	Article	IF	CITATIONS
73	TLX1/HOX11-Mediated Disruption of Hematopoietic Differentiation Programs Blood, 2005, 106, 2997-2997.	1.4	O
74	Statistical analysis of over-represented words in human promoter sequences. Nucleic Acids Research, 2004, 32, 949-958.	14.5	108
75	High-resolution genome-wide mapping of histone modifications. Nature Biotechnology, 2004, 22, 1013-1016.	17.5	199
76	Characterization of sequence variability in nucleosome core histone folds. Proteins: Structure, Function and Bioinformatics, 2003, 52, 454-465.	2.6	18
77	Mining Core Histone Sequences from Public Protein Databases. Methods in Enzymology, 2003, 375, 3-20.	1.0	3
78	Identifying related L1 retrotransposons by analyzing 3' transduced sequences. Genome Biology, 2003, 4, R30.	9.6	34
79	Retroposed Copies of the HMG Genes: A Window to Genome Dynamics. Genome Research, 2003, 13, 800-812.	5.5	35
80	B-ZIP Proteins Encoded by the Drosophila Genome: Evaluation of Potential Dimerization Partners. Genome Research, 2002, 12, 1190-1200.	5 . 5	68
81	Expressed Sequence Tags (ESTs). Methods of Biochemical Analysis, 2002, 43, 283-301.	0.2	8
82	The Histone Database. Nucleic Acids Research, 2002, 30, 341-342.	14.5	58
83	Molecular archeology of L1 insertions in the human genome. Genome Biology, 2002, 3, research0052.1.	9.6	180
84	Learning about addiction from the genome. Nature, 2001, 409, 834-835.	27.8	137
85	PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches. Nucleic Acids Research, 2001, 29, 3988-3996.	14.5	24
86	HMGN4, a Newly Discovered Nucleosome-Binding Protein Encoded by an Intronless Gene. DNA and Cell Biology, 2001, 20, 256-263.	1.9	30
87	NBP-45, a Novel Nucleosomal Binding Protein with a Tissue-specific and Developmentally Regulated Expression. Journal of Biological Chemistry, 2000, 275, 6368-6374.	3.4	51
88	Histone Sequence Database: sequences, structures, post-translational modifications and genetic loci. Nucleic Acids Research, 1999, 27, 323-324.	14.5	10
89	Bioinformatics and the developing world. Biotechnology and Development Monitor, 1999, 40, 10-13.	0.0	4
90	Candidate Regulatory Sequence Elements for Cell Cycle-Dependent Transcription in <i>Saccharomyces cerevisiae</i> . Genome Research, 1999, 9, 775-792.	5.5	69

#	Article	IF	CITATIONS
91	A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell, 1998, 2, 65-73.	9.7	1,927
92	The Biochemical and Phenotypic Characterization of Hho1p, the Putative Linker Histone H1 of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 7268-7276.	3.4	132
93	Predictive Methods Using Protein Sequences. Methods of Biochemical Analysis, 1998, 39, 246-267.	0.2	0
94	Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. Journal of Molecular Biology, 1997, 267, 818-829.	4.2	74
95	Homology model building of the HMG-1 box structural domain. Nucleic Acids Research, 1995, 23, 1019-1029.	14.5	27
96	Common sequence and structural features in the heat-shock factor and Ets families of DNA-binding domains. Trends in Biochemical Sciences, 1995, 20, 225-226.	7.5	18
97	The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Research, 1995, 23, 1604-1613.	14.5	209
98	A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Research, 1995, 23, 2685-2691.	14.5	195
99	A signature for the HMGâ€1 box DNAâ€binding proteins. BioEssays, 1993, 15, 539-546.	2.5	265
100	No HMG-1 box signature. Nature, 1993, 363, 590-590.	27.8	7
100	No HMG-1 box signature. Nature, 1993, 363, 590-590. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864.	27.8	7
	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids		
101	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864.	14.5	128
101	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864. Mapping the human gene coding for chromosomal protein HMG-17. Human Genetics, 1990, 85, 376-8. Mouse non-histone chromosomal protein HMG-14 cDNA sequence. Nucleic Acids Research, 1990, 18,	14.5 3.8	128
101 102 103	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864. Mapping the human gene coding for chromosomal protein HMG-17. Human Genetics, 1990, 85, 376-8. Mouse non-histone chromosomal protein HMG-14 cDNA sequence. Nucleic Acids Research, 1990, 18, 5311-5311. A single copy gene for chicken chromosomal protein HMG-14b has evolutionarily conserved features, has lost one of its introns and codes for a rapidly evolving protein. Journal of Molecular Biology,	14.5 3.8 14.5	128 13 8
101 102 103	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864. Mapping the human gene coding for chromosomal protein HMG-17. Human Genetics, 1990, 85, 376-8. Mouse non-histone chromosomal protein HMG-14 cDNA sequence. Nucleic Acids Research, 1990, 18, 5311-5311. A single copy gene for chicken chromosomal protein HMG-14b has evolutionarily conserved features, has lost one of its introns and codes for a rapidly evolving protein. Journal of Molecular Biology, 1990, 211, 49-61. Structural features of the HMG chromosomal proteins and their genes. Biochimica Et Biophysica Acta	14.5 3.8 14.5 4.2	128 13 8 24
101 102 103 104	RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Research, 1992, 20, 2861-2864. Mapping the human gene coding for chromosomal protein HMG-17. Human Genetics, 1990, 85, 376-8. Mouse non-histone chromosomal protein HMG-14 cDNA sequence. Nucleic Acids Research, 1990, 18, 5311-5311. A single copy gene for chicken chromosomal protein HMG-14b has evolutionarily conserved features, has lost one of its introns and codes for a rapidly evolving protein. Journal of Molecular Biology, 1990, 211, 49-61. Structural features of the HMG chromosomal proteins and their genes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1049, 231-243. Human non-histone chromosomal protein HMG-17: identification, characterization, chromosome localization and RFLPs of a functional gene from the large multigene family. Nucleic Acids Research,	14.5 3.8 14.5 4.2	128 13 8 24 440

#	Article	IF	CITATIONS
109	Chicken non-histone chromosomal protein HMG-17 cDNA sequence. Nucleic Acids Research, 1987, 15, 6750-6750.	14.5	12
110	Retropseudogenes for human chromosomal protein HMG-17. Journal of Molecular Biology, 1987, 197, 405-413.	4.2	38
111	Immunofractionation of DNA sequences associated with HMG-17 in chromatin. Experimental Cell Research, 1986, 166, 486-496.	2.6	50
112	Exchange of proteins during immunofractionation of chromatin. Experimental Cell Research, 1986, 163, 95-102.	2.6	21
113	Immunofractionation of chromatin regions associated with histone H1o. FEBS Journal, 1986, 160, 253-260.	0.2	26