J H Frederik Falkenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7094471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetrameric HLA class l–minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nature Medicine, 1999, 5, 839-842.	30.7	256
2	Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood, 2003, 102, 3530-3540.	1.4	204
3	Reprogramming of Virus-specific T Cells into Leukemia-reactive T Cells Using T Cell Receptor Gene Transfer. Journal of Experimental Medicine, 2004, 199, 885-894.	8.5	176
4	Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood, 2007, 109, 235-243.	1.4	156
5	New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood, 2004, 103, 2677-2682.	1.4	153
6	Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Frontiers in Immunology, 2016, 7, 100.	4.8	109
7	PRAME-Specific Allo-HLA–Restricted T Cells with Potent Antitumor Reactivity Useful for Therapeutic T-Cell Receptor Gene Transfer. Clinical Cancer Research, 2011, 17, 5615-5625.	7.0	104
8	Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood, 2014, 124, 3490-3500.	1.4	103
9	Naturally Processed Non-canonical HLA-A*02:01 Presented Peptides. Journal of Biological Chemistry, 2015, 290, 2593-2603.	3.4	89
10	BH3 Inhibitor Sensitivity and Bcl-2 Dependence in Primary Acute Lymphoblastic Leukemia Cells. Cancer Research, 2015, 75, 1366-1375.	0.9	79
11	Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia. Immunological Reviews, 1997, 157, 223-230.	6.0	67
12	Characterization of leukemias with ETV6-ABL1 fusion. Haematologica, 2016, 101, 1082-1093.	3.5	66
13	B and T Lymphocyte Attenuator Mediates Inhibition of Tumor-Reactive CD8+ T Cells in Patients After Allogeneic Stem Cell Transplantation. Journal of Immunology, 2012, 189, 39-49.	0.8	60
14	Long–term culture of primary human lymphoblastic leukemia cells in the absence of serum or hematopoietic growth factors. Experimental Hematology, 2009, 37, 376-385.	0.4	54
15	Simultaneous Deletion of Endogenous TCRαβ for TCR Gene Therapy Creates an Improved and Safe Cellular Therapeutic. Molecular Therapy, 2020, 28, 64-74.	8.2	50
16	Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1–reactive cytotoxic T cells. Blood, 2009, 113, 2312-2323.	1.4	46
17	Patient HLA-DP–Specific CD4+ T Cells from HLA-DPB1–Mismatched Donor Lymphocyte Infusion Can Induce Graft-versus-Leukemia Reactivity in the Presence or Absence of Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2013, 19, 40-48.	2.0	46
18	TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood, 2017, 129, 1284-1295.	1.4	44

#	Article	IF	CITATIONS
19	The biological activities of interleukin-1. Blut, 1989, 59, 147-156.	1.2	43
20	Association of Disparities in Known Minor Histocompatibility Antigens with Relapse-Free Survival and Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 274-282.	2.0	43
21	Ex vivo AKT-inhibition facilitates generation of polyfunctional stem cell memory-like CD8+ T cells for adoptive immunotherapy. Oncolmmunology, 2018, 7, e1488565.	4.6	41
22	Optimization of the HA-1-specific T-cell receptor for gene therapy of hematologic malignancies. Haematologica, 2011, 96, 477-481.	3.5	36
23	Specific TÂCell Responses against Minor Histocompatibility Antigens Cannot Generally Be Explained by Absence of Their Allelic Counterparts on the Cell Surface. Proteomics, 2018, 18, e1700250.	2.2	34
24	A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. Journal of Experimental Medicine, 2018, 215, 1493-1504.	8.5	33
25	CD4 Donor Lymphocyte Infusion Can Cause Conversion of Chimerism Without GVHD by Inducing Immune Responses Targeting Minor Histocompatibility Antigens in HLA Class II. Frontiers in Immunology, 2018, 9, 3016.	4.8	33
26	Double Umbilical Cord Blood Transplantation: A Study of Early Engraftment Kinetics in Leukocyte Subsets using HLA-Specific Monoclonal Antibodies. Biology of Blood and Marrow Transplantation, 2013, 19, 266-273.	2.0	31
27	Induction of A. fumigatus-specific CD4-positive T cells in patients recovering from invasive aspergillosis. Haematologica, 2014, 99, 1255-1263.	3.5	31
28	CD4+ T-cell alloreactivity toward mismatched HLA class II alleles early after double umbilical cord blood transplantation. Blood, 2016, 128, 2165-2174.	1.4	31
29	Graft versus tumor effects and why people relapse. Hematology American Society of Hematology Education Program, 2017, 2017, 693-698.	2.5	30
30	A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL. Blood, 2010, 116, 5930-5940.	1.4	29
31	PRAME and HLA Class I expression patterns make synovial sarcoma a suitable target for PRAME specific T-cell receptor gene therapy. Oncolmmunology, 2018, 7, e1507600.	4.6	28
32	Permissive HLA-DPB1 mismatches in HCT depend on immunopeptidome divergence and editing by HLA-DM. Blood, 2021, 137, 923-928.	1.4	28
33	HLA-DPB1 Mismatching Results in the Generation of a Full Repertoire of HLA-DPB1-Specific CD4+ T Cell Responses Showing Immunogenicity of all HLA-DPB1 Alleles. Biology of Blood and Marrow Transplantation, 2010, 16, 1282-1292.	2.0	25
34	Generation of CD20-specific TCRs for TCR gene therapy of CD20low B-cell malignancies insusceptible to CD20-targeting antibodies. Oncotarget, 2016, 7, 77021-77037.	1.8	24
35	Immunopeptidome Analysis of HLA-DPB1 Allelic Variants Reveals New Functional Hierarchies. Journal of Immunology, 2020, 204, 3273-3282.	0.8	23
36	HLA class I-minor histocompatibility antigen tetramers select cytotoxic T cells with high avidity to the natural ligand. The Hematology Journal, 2000, 1, 403-410.	1.4	23

#	Article	IF	CITATIONS
37	Generation and infusion of multi-antigen-specific T cells to prevent complications early after T-cell depleted allogeneic stem cell transplantation—a phase I/II study. Leukemia, 2020, 34, 831-844.	7.2	21
38	Improved Long Term Survival with Minimal GVHD after Myeloablative Unrelated Donor Stem Cell Transplantation Using In Vitro and In Vivo T Cell Depletion with CAMPATH-1H Blood, 2004, 104, 2761-2761.	1.4	21
39	Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses <i>ex vivo</i> . OncoImmunology, 2017, 6, e1285991.	4.6	20
40	Comparing CAR and TCR engineered T cell performance as a function of tumor cell exposure. Oncolmmunology, 2022, 11, 2033528.	4.6	19
41	Dissecting Genetic Control of HLA-DPB1 Expression and Its Relation to Structural Mismatch Models in Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2018, 9, 2236.	4.8	18
42	Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b. Blood, 2015, 125, 949-958.	1.4	17
43	Leukemic CD52 Negative Subclones Due to Defective Glycophosphatidyl-Innositol Anchoring Are Common in Acute Precursor B Lymphoblastic Leukemia, Escape Alemtuzumab Therapy, but Display Increased Sensitivity to Rituximab Mediated Complement Dependent Cytotoxicity: a Mechanistic Rationale for Antibody Combination Therapy., Blood, 2009, 114, 835-835.	1.4	16
44	LB-ARHGDIB-1R as a novel minor histocompatibility antigen for therapeutic application. Haematologica, 2015, 100, e419-e422.	3.5	14
45	The Value of Online Algorithms to Predict T-Cell Ligands Created by Genetic Variants. PLoS ONE, 2016, 11, e0162808.	2.5	14
46	Human CD34+ Myeloid Leukemic Progenitor Cells Are Susceptible to Lysis by Minor Histocompatibility Antigen LRH-1-Specific Cytotoxic T Lymphocytes Blood, 2006, 108, 134-134.	1.4	14
47	Public T-Cell Receptors (TCRs) Revisited by Analysis of the Magnitude of Identical and Highly-Similar TCRs in Virus-Specific T-Cell Repertoires of Healthy Individuals. Frontiers in Immunology, 2022, 13, 851868.	4.8	14
48	Longâ€ŧerm in vitro persistence of magnetic properties after magnetic beadâ€based cell separation of T cells. Scandinavian Journal of Immunology, 2020, 92, e12924.	2.7	13
49	Clinically applicable CD34+-derived blood dendritic cell subsets exhibit key subset-specific features and potently boost anti-tumor T and NK cell responses. Cancer Immunology, Immunotherapy, 2021, 70, 3167-3181.	4.2	13
50	T Cell Chimerism After T Cell Depleted Allogeneic Stem Cell Transplantation Is Influenced by Immunological Factors Including the Conditioning Regimen, CMV Serostatus and GvHD and Does Significantly Bias Overall Chimerism Status. Blood, 2010, 116, 1321-1321.	1.4	13
51	T Cell Therapy in Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2008, 14, 136-141.	2.0	11
52	Complement-dependent cytotoxicity induced by therapeutic antibodies in B-cell acute lymphoblastic leukemia is dictated by target antigen expression levels and augmented by loss of membrane-bound complement inhibitors. Leukemia and Lymphoma, 2017, 58, 2185-2195.	1.3	11
53	A minority of T cells recognizing tumor-associated antigens presented in self-HLA can provoke antitumor reactivity. Blood, 2020, 136, 455-467.	1.4	11
54	Donor Lymphocyte Infusion (DLI) for Mixed Chimerism 6 Months after T Cell Depleted Allogeneic Stem Cell Transplantation (TCD alloSCT) May Prevent Relapse Blood, 2006, 108, 3674-3674.	1.4	10

#	Article	IF	CITATIONS
55	T cell receptor engineering of primary NK cells to therapeutically target tumors and tumor immune evasion. , 2022, 10, e003715.		10
56	Cytokine-Dependent Proliferation of Human CD34+Progenitor Cells in the Absence of Serum Is Suppressed by Their Progeny's Production of Serine Proteinases. Stem Cells, 2006, 24, 299-306.	3.2	9
57	High Mutation Frequency of the <i>PIGA</i> Gene in T Cells Results in Reconstitution of GPI Anchorâ^'/CD52â^' T Cells That Can Give Early Immune Protection after Alemtuzumab-Based T Cell–Depleted Allogeneic Stem Cell Transplantation. Journal of Immunology, 2018, 200, 2199-2208.	0.8	9
58	Alloreactive T Cell Receptor Diversity against Structurally Similar or Dissimilar HLA-DP Antigens Assessed by Deep Sequencing. Frontiers in Immunology, 2018, 9, 280.	4.8	9
59	Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA. Journal of Immunology, 2019, 202, 1895-1903.	0.8	9
60	Identification of Functional HLA-A*01:01–Restricted Epstein-Barr Latent Membrane Protein 2–Specific T-Cell Receptors. Journal of Infectious Diseases, 2022, 226, 833-842.	4.0	9
61	Promiscuity of Peptides Presented in HLA-DP Molecules from Different Immunogenicity Groups Is Associated With T-Cell Cross-Reactivity. Frontiers in Immunology, 2022, 13, 831822.	4.8	9
62	Loss of the GPlâ€anchor in Bâ€lymphoblastic leukemia by epigenetic downregulation of <i>PIGH</i> expression. American Journal of Hematology, 2019, 94, 93-102.	4.1	8
63	Optimized Whole Genome Association Scanning for Discovery of HLA Class I-Restricted Minor Histocompatibility Antigens. Frontiers in Immunology, 2020, 11, 659.	4.8	8
64	Magnitude of Off-Target Allo-HLA Reactivity by Third-Party Donor-Derived Virus-Specific T Cells Is Dictated by HLA-Restriction. Frontiers in Immunology, 2021, 12, 630440.	4.8	8
65	Natural Tâ€cell ligands that are created by genetic variants can be transferred between cells by extracellular vesicles. European Journal of Immunology, 2018, 48, 1621-1631.	2.9	7
66	Impact of alemtuzumab pharmacokinetics on T-cell dynamics, graft-versus-host disease and viral reactivation in patients receiving allogeneic stem cell transplantation with an alemtuzumab-based T-cell-depleted graft. Transplant Immunology, 2019, 57, 101209.	1.2	7
67	Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase. Frontiers in Immunology, 2020, 11, 381.	4.8	7
68	A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer. Oncotarget, 2016, 7, 71536-71547.	1.8	7
69	Immunotherapy of hematological malignancies with dendritic cells. The Hematology Journal, 2004, 5, S96-S99.	1.4	5
70	Double Umbilical Cord Blood Transplantation in Highâ€Risk Hematological Patients: A Phase II Study Focusing on the Mechanism of Graft Predominance. HemaSphere, 2019, 3, e285.	2.7	5
71	Guideline development for prevention of transfusionâ€associated graft―versus â€host disease: reduction of indications for irradiated blood components after prestorage leukodepletion of blood components. British Journal of Haematology, 2021, 195, 681-688.	2.5	5
72	Universal CD137 Expression upon Activation Allows Efficient Isolation of a Broad Repertoire of Virus-Specific CD8+ and CD4+ T Cells for Adoptive Immunotherapy Blood, 2008, 112, 2222-2222.	1.4	5

#	Article	IF	CITATIONS
73	Allogeneic HLA-A2-Restricted WT1-Specific T Cells From Mismatched Donors Are Highly Reactive but Show Potentially Hazardous Promiscuity Blood, 2009, 114, 4081-4081.	1.4	5
74	Durable Remission of Renal Cell Carcinoma in Conjuncture with Graft versus Host Disease following Allogeneic Stem Cell Transplantation and Donor Lymphocyte Infusion: Rule or Exception?. PLoS ONE, 2014, 9, e85198.	2.5	4
75	G-CSF: early benefits but late risks?. Blood, 2001, 97, 2194-2194.	1.4	3
76	HLA Class II Upregulation During An Ongoing Viral Infection Can Lead to HLA-DP Directed Graft-Versus-Host Disease After HLA-DPB1 Mismatched CD4+ Donor Lymphocyte Infusion. Blood, 2011, 118, 3062-3062.	1.4	3
77	An HLA-A*11:01-Binding Neoantigen from Mutated NPM1 as Target for TCR Gene Therapy in AML. Cancers, 2021, 13, 5390.	3.7	3
78	Immune surveillance by autoreactive CD4â€positive helper T cells is a common phenomenon in patients with acute myeloid leukemia. European Journal of Haematology, 2018, 101, 665-675.	2.2	2
79	Efficient Induction and Isolation of CMV-Specific CD8+ T Cells from CMV Seronegative Donors for the Treatment of CMV Reactivation in CMV Seropositive Patients Transplanted with a CMV Seronegative Donor Blood, 2007, 110, 1053-1053.	1.4	2
80	Prevention of Viral Infections after T Cell Depleted Allogeneic Stem Cell Transplantation By Infusion of Multi-Antigen Specific T Cell Products. Blood, 2016, 128, 1228-1228.	1.4	2
81	Rituximab and Alemtuzumab in Combination, but Not Alone, Induce Complete Remissions in a Preclinical Animal Model of Primary Human ALL: Rationale for Combination Treatment Blood, 2007, 110, 2833-2833.	1.4	2
82	Identification of Multiple HLA Class II Epitopes of Aspergillus Fumigatus by Generation of CD4+ T Cell Clones Recognizing the A. Fumigatus proteins Crf1 and Catalase1. Blood, 2010, 116, 2332-2332.	1.4	2
83	PR1 on the edge of humoral immunotherapy. Blood, 2011, 117, 4164-4165.	1.4	1
84	The Prodrug AQ4N Displays Potent Anti-Tumor Activity in a Xenotransplantation Model of Primary Human Acute Lymphoblastic Leukemia Blood, 2005, 106, 1837-1837.	1.4	1
85	Donor Lymphocyte Infusion for Mixed Chimerism or Residual Disease after Reduced-Intensity T Cell Depleted Stem Cell Transplantation Results in Conversion to Full Donor Chimerism Combined with Graft Versus Tumor Responses and Limited GVHD Blood, 2007, 110, 1652-1652.	1.4	1
86	Human Alloreactive CD4+ T Cells as Potent Effector Cells and Sole Mediators of Anti-Tumor Responses in a NOD/SCID Mouse Model for Human Acute Leukemia Blood, 2008, 112, 1245-1245.	1.4	1
87	High Avidity PRAME Specific T Cells Derived From In Vivo HLA Mismatched Transplantation Setting Potentially Useful for Immunotherapeutic Strategies Blood, 2009, 114, 4087-4087.	1.4	1
88	Preliminary Results From a Phase III Trial of Imatinib Versus Imatinib in Combination with Cytarabine in Patients with First Chronic Phase Myeloid Leukemia. Blood, 2011, 118, 2758-2758.	1.4	1
89	HLA Class II Disparity Is Necessary and Sufficient for Induction of Effective Anti-Tumor Immunity by Donor Lymphocyte Infusion in a NOD/Scid Mouse Model for Human Acute Lymphoblastic Leukemia. Blood, 2011, 118, 648-648.	1.4	1
90	T Cell Receptors Specific for the Intracellular Transcription Factor Bob1 Allow Efficient Targeting of Human B Cell Leukemia and Multiple Myeloma. Blood, 2014, 124, 3832-3832.	1.4	1

#	Article	IF	CITATIONS
91	T Cell Receptor Gene Therapy Targeting the Intracellular Transcription Factor Bob1 for the Treatment of Multiple Myeloma and Other B Cell Malignancies. Blood, 2015, 126, 3002-3002.	1.4	1
92	Early CD4+ T-Cell Effector Alloreactivity Towards Multiple Mismatched HLA Class II Alleles Is Associated with Graft Predominance after Double Umbilical Cord Blood Transplantation (dUCBT). Blood, 2015, 126, 387-387.	1.4	1
93	Endogenous Immunoglobulin-Derived Neoepitopes Are Processed and Form a Sizeable Fraction of the HLA Class I Ligandome of Human Lymphoma Cells. Blood, 2016, 128, 914-914.	1.4	1
94	The Functional Activity of Genetically Engineered T Cell Receptor Transferred T Cells Is Highly Dependent on Pairing Properties of the Transferred TCR α and β Chains Blood, 2004, 104, 1753-1753.	1.4	1
95	Toxicity and Effectivity of the Experimental Cytotoxic Drug Cyclopentenyl Cytosine in NOD/scid Mice with Acute Lymphoblastic Leukemia (ALL) Blood, 2005, 106, 4574-4574.	1.4	1
96	Upregulation of CD20 on Human Acute Lymphoblastic Leukemia Cells by IL-4 and CpG Motif Containing Oligonucleotides Increases Susceptibility to Rituximab Blood, 2006, 108, 1879-1879.	1.4	1
97	The Effect of Donor Lymphocyte Infusion Dose on the Occurrence of Severe Life-Threatening Acute Graft-Versus-Host Disease Early after Reduced Intensity Conditioning T Cell Depleted Stem Cell Transplantation Blood, 2008, 112, 2218-2218.	1.4	1
98	Characterization of Leukemias with ETV6-ABL1 Fusion. Blood, 2015, 126, 84-84.	1.4	1
99	Cutting Edge: Unconventional CD8 ⁺ T Cell Recognition of a Naturally Occurring HLA-A*02:01–Restricted 20mer Epitope. Journal of Immunology, 2022, , ji2101208.	0.8	1
100	Combating cancer with allogeneic T cells. Blood, 2010, 115, 3856-3857.	1.4	0
101	MB-64ADOPTIVE CELL IMMUNOTHERAPY IN MEDULLOBLASTOMA BASED ON T CELLS REDIRECTED TOWARD TUMOR CELLS BY PRAME SPECIFIC $\hat{1}\pm\hat{1}^2$ TCR GENE MODIFICATION. Neuro-Oncology, 2016, 18, iii111.3-iii111.	1.2	0
102	Donor T-Cells Specific for Lineage-Restricted Maturation Antigens Not Recognizing Immature Progenitor Cells May Lead to Hematologic Remission but Molecular Persistence of Chronic Myeloid Leukemia (CML) Blood, 2004, 104, 1016-1016.	1.4	0
103	Expansion and Transformation of Primary Acute Lymphoblastic Leukemia Cells into Antigen-Presenting Cells using a Novel Culturing System Enables the Generation of Leukemia-Reactive T Cell Responses that Are Effective in Vivo Blood, 2004, 104, 303-303.	1.4	0
104	Retroviral Gene Transfer of T Cell Receptors (TCR) Specific for Minor Histocompatibility Antigens to Virus-Specific T Cells as Cellular Immunotherapy of Patients with Relapsed Hematological Malignancies after Allogeneic Stem Cell Transplantation Blood, 2005, 106, 5529-5529.	1.4	0
105	Re-Engineering Î ³ δT Cells by α Î ² T Cell Receptor Gene Transfer Creates Potent Effector Cells with Anti-Leukemic Reactivity Blood, 2005, 106, 1288-1288.	1.4	0
106	Physiological TCR Modulation after Antigen Specific Triggering of Introduced TCRs under Control of a Retroviral Promotor Blood, 2005, 106, 5537-5537.	1.4	0
107	In Vitro Cell Division Analysis Reveals High Proliferative Potential and Clonogenicity within Primary Common-Type Human Acute Lymphoblastic Leukemia Blood, 2005, 106, 857-857.	1.4	0
108	Identification of the Angiogenic Endothelial Cell Growth Factor-1/Thymidine Phosphorylase as a Target for Immunotherapy of Cancer Blood, 2005, 106, 3094-3094.	1.4	0

#	Article	IF	CITATIONS
109	GVHD in HLA-A2 Mismatched Transplantation Caused by a Combined CD8 Response Directed Against HLA-A2 and a CD4 Response Recognizing an HLA-A2 Derived Peptide in HLA-DR1 Blood, 2006, 108, 5164-5164.	1.4	0
110	Generation of GMP-Grade CMV pp65-Specific CD8+ and CD4+ Donor T Cell Lines for Treatment of CMV Reactivation after Transplantation Blood, 2006, 108, 2931-2931.	1.4	0
111	Profound T Cell Depletion Does Not Eradicate CMV Specific CD8 T Cells Responsible for Protective Immunity to CMV after T Cell Depleted Allogeneic Stem Cell Transplantation Blood, 2006, 108, 2920-2920.	1.4	0
112	ATP Dependent Interferon Responsive (ADIR) Gene Encodes an Activation Induced Minor Histocompatibility Antigen Recognized on Multiple Myeloma by CD8+ T Cells Blood, 2006, 108, 549-549.	1.4	0
113	Complete Remission of Immunocytoma without Graft Versus Host Disease Caused by Allo-HLA-DP Specific T Cells Blood, 2006, 108, 3665-3665.	1.4	0
114	Leukemic Blasts Acting as Host Antigen Presenting Cells Trigger a Combined CD4 and CD8 Allo-Immune Response Directed Against Mismatched HLA Class I Blood, 2007, 110, 5030-5030.	1.4	0
115	Allo-HLA Reactive CD8 T-Cells May Recognize Tissue Specific Peptides Explaining Tissue Restricted GVHD after HLA Mismatched SCT Blood, 2007, 110, 72-72.	1.4	0
116	Physiological Non-Responsiveness and Absence of Activation Induced Cell Death of T Cells Rapidly Re-Expressing Retrovirally Introduced TCRs after T Cell Activation Blood, 2007, 110, 2301-2301.	1.4	0
117	T Cell Receptor Gene Transfer to Virus-Specific T Cells for Cellular Anti-Tumor Immunotherapy Blood, 2007, 110, 2594-2594.	1.4	Ο
118	Identification of Phosphatidylinositol 4-Kinase Type II β as the First HLA Class II Associated Minor Histocompatibility Antigen Involved in Graft Versus Leukemia Reactivity Blood, 2007, 110, 1800-1800.	1.4	0
119	Establishment and Characterization of a tel/abl Rearrangement Responsible for Imatinib Sensitivity in bcr/abl Negative Acute Lymphoblastic Leukemia Blood, 2007, 110, 4280-4280.	1.4	0
120	Detection of Varicella Zoster Virus Specific CD8 T Cells in Patients after T Cell Depleted Allogeneic Stem Cell Transplantation by a Novel Epitope Screening Technology Blood, 2007, 110, 1060-1060.	1.4	0
121	Proliferation of Acute Lymphoblastic Leukemic (ALL) Cells Is Dependent on Exogenous Purine Administration Blood, 2007, 110, 3466-3466.	1.4	0
122	Identification of Four New HLA Class II Restricted Minor Histocompatibility Antigens Contributing to Graft Versus Leukemia Reactivity Blood, 2008, 112, 3247-3247.	1.4	0
123	Alloreactivity of Virus Specific T-Cells Blood, 2008, 112, 3249-3249.	1.4	0
124	High Avidity HLA-A2-Restricted CD8+ T Cells against the Wilms Tumor Protein (WT1) Can Be Isolated Only from HLA-A2 Negative Donors Not Subjected to HLA-A2-Mediated Thymic Deletion. Blood, 2008, 112, 3895-3895.	1.4	0
125	Detailed Analysis of CD8+ T Cell Immunity and Identification of a Novel Minor Histocompatibility Antigen Contributing to Graft-Versus- Leukemia Reactivity Blood, 2008, 112, 3250-3250.	1.4	0
126	Both the Activation Kinetics and the Frequency of Regulatory T Cells Determine the Ability to Generate Primary Anti-Tumor and Pathogen- Specific Immune Responses from a Nail^ve Donor T Cell Repertoire. Blood, 2008, 112, 3898-3898.	1.4	0

#	Article	IF	CITATIONS
127	Recombination of Endogenous TCR Chains with Retrovirally Introduced TCR Chains Can Result in Mixed T Cell Receptor Dimers Harbouring Harmful Alloreactivity. Blood, 2008, 112, 823-823.	1.4	Ο
128	HLA-DPB1 Mismatching Results in the Generation of a Full Repertoire of HLA-DPB1 Specific T Cell Responses Showing Immunogenicity of All HLA-DPB1 Alleles. Blood, 2008, 112, 3504-3504.	1.4	0
129	Leukemic Blasts Acting as Host Antigen Presenting Cells Trigger a Combined CD4 and CD8 Allo-Immune Response Directed against Mismatched HLA Class I. Blood, 2008, 112, 4607-4607.	1.4	0
130	Focal Deletion of Genes Involved in the Control of Cell Cycle Progression Contributes to Growth Factor Independence in Acute Lymphoblastic Leukemia Cells. Blood, 2008, 112, 789-789.	1.4	0
131	Generation of Combined CD8+ and CD4+ T Cell Lines with High Specificity for Adenovirus Hexon Epitopes for Adoptive Immunotherapy after Allogeneic Stem Cell Transplantation Blood, 2008, 112, 2225-2225.	1.4	0
132	Sequence Dependent Efficiency of Cross-Presentation in MHC Class I Requires Rational Design of Long Synthetic Peptides for Vaccination or Ex Vivo Activation. Blood, 2008, 112, 3904-3904.	1.4	0
133	Diversity of HLA Class I and Class II Restricted Minor Histocompatibility Antigens in Graft-Versus-Leukemia Reactivity Blood, 2009, 114, 4084-4084.	1.4	Ο
134	Collateral Damage: a Mechanism for Hematopoiesis-Restricted Mhag-Specific T Cells to Play a Role in the Effector Phase of GvHD Blood, 2009, 114, 3552-3552.	1.4	0
135	Potent Alloreactive Effector T Cells Cause Limited Damage to Non-Hematopoietic Tissues Under Non-Inflammatory Conditions, Despite Proper Expression of the Relevant Target Antigens Blood, 2009, 114, 2454-2454.	1.4	0
136	Optimization of the HA-1-Specific T Cell Receptor for Gene Therapy of Hematological Malignancies Blood, 2009, 114, 4093-4093.	1.4	0
137	Treatment with Tyrosine Kinase Inhibitors May Impair the Potential Curative Effect of Allogeneic Stem Cell Transplantation Blood, 2009, 114, 857-857.	1.4	Ο
138	Extracellular Domains of CD8a and β Subunits Are Required and Sufficient for HLA Class I Restricted Helper Activity of TCR-Engineered CD4+ T Cells Blood, 2009, 114, 3574-3574.	1.4	0
139	High Throughput Minor Histocompatibility Antigen Discovery by Whole Genome Association Scanning Blood, 2009, 114, 685-685.	1.4	0
140	Myeloid Chimerism Reflects Engraftment of Donor Hematopoiesis, Whereas T Cell Chimerism Reflects Survival and Expansion of Donor and Recipient Residual Mature T Cells Early After T Cell Depleted Allogeneic Stem Cell Transplantation Blood, 2009, 114, 4475-4475.	1.4	0
141	Alloreactive T Cells for the Treatment of Leukemia. , 2010, , 397-411.		0
142	Primary Antibody Responses Against the Novel Pandemic H1N1 and Secondary Antibody Responses Against Seasonal H1N1 Can Be Induced by Vaccination In Patients Early After Allogeneic Stem Cell Transplantation. Blood, 2010, 116, 1273-1273.	1.4	0
143	Low Incidence of Post-Transplant EBV-Related Disease After Alemtuzumab-Mediated T Cell Depletion Is Explained by the Differential Susceptibility to Alemtuzumab of B Cells and Protective CD8 and CD4 T Cells. Blood, 2010, 116, 2330-2330.	1.4	0
144	Multi-Dimensional Resistance Phenotype Allows Subpopulation of Quiescent Chronic Myeloid Leukemia Stem Cells to Universally Escape From Therapeutic Attack. Blood, 2010, 116, 203-203.	1.4	0

#	Article	IF	CITATIONS
145	Eradication of Recipient CMV Specific T Cells by Donor Lymphocyte Infusion Does Not Impair Protective Immunity In Patients Transplanted with a CMV Negative Donor Due to An Early Donor Derived Primary CMV Specific T Cell Response. Blood, 2010, 116, 834-834.	1.4	0
146	Quantitative Monitoring of NPM1A Mutations Can Be Used to Guide Immunotherapeutic Interventions After Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia. Blood, 2011, 118, 3061-3061.	1.4	0
147	Occurrence of T Cells Specific for the Aspergillus Proteins Crf1 and Catalase1 in Patients Recovering From Invasive Aspergillosis. Blood, 2011, 118, 3008-3008.	1.4	0
148	High Throughput Screening for Antibody Responses Against H-Y Antigens and Their X-Variants in Allogeneic Hematopoeietic Stem Cell Transplantation,. Blood, 2011, 118, 4097-4097.	1.4	0
149	Association of Disparities in Known Minor Histocompatibility Antigens with Relapse-Free Survival and Graft-Versus-Host-Disease Upon Allogeneic Stem Cell Transplantation,. Blood, 2011, 118, 4136-4136.	1.4	0
150	Collateral Damage of Non-Hematopoietic Tissue by Hematopoiesis-Specific T Cells Results in GvHD During An Ongoing Profound Gvl Reaction,. Blood, 2011, 118, 4031-4031.	1.4	0
151	Durable Remission of Renal Cell Carcinoma After Donor Lymphocyte Infusion Is Unavoidably Linked with Graft Versus Host Disease As Illustrated by the Detection of Allo Reactive T Cells Recognizing a Novel Minor Histocompatibility Antigen Encoded by the FUCA2 Gene. Blood, 2012, 120, 4467-4467.	1.4	0
152	Effectiveness of a Strategy to Proceed to Allogeneic Stem Cell Transplantation in All Elderly AML Patients Treated with Intensive Chemotherapy: Only Patients in Complete Remission After First Induction Show Long Term Survival Blood, 2012, 120, 3085-3085.	1.4	0
153	Immune Surveillance By Autoreactive Helper But Not Cytolytic T Cells Is a Common Phenomenon In Patients With Acute Myeloid Leukemia. Blood, 2013, 122, 1044-1044.	1.4	0
154	Modeling Resistance To Tyrosine Kinase Inhibitors In TEL/ABL-Positive Acute Lymphoblastic Leukemia. Blood, 2013, 122, 3826-3826.	1.4	0
155	Graft Versus Leukemia Separates From Graft Versus Host Disease By Magnitude and Avidity Of The Allo-Reactive T Cell Response After Allogeneic Stem Cell Transplantation and Donor Lymphocyte Infusion. Blood, 2013, 122, 2014-2014.	1.4	0
156	LB-ARHGDIB-1R As Novel Minor Histocompatibility Antigen For Therapeutic Application. Blood, 2013, 122, 4465-4465.	1.4	0
157	Effectivity Of Complement-Dependent Cytotoxicity Induced By Therapeutic Antibodies In Acute Lymphoblastic Leukemia Is Dictated By Antigen Expression Levels and Curtailed By Membrane-Bound Complement Regulatory Proteins. Blood, 2013, 122, 3909-3909.	1.4	0
158	High-Affinity CD20-Specific T-Cell Receptors Suitable for Adoptive Immunotherapy in the Treatment of CD20low B-Cell Malignancies. Blood, 2014, 124, 3837-3837.	1.4	0
159	Tumor Associated Antigen Reactive Donor T Cells As Elementary Components of Streptamer Isolated Multi-Antigen Specific T Cells. Blood, 2014, 124, 313-313.	1.4	0
160	Functional Analysis of the Subclonal Architecture of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) at a Single Cell Level. Blood, 2014, 124, 3778-3778.	1.4	0
161	Multilevel Molecular Profiling to Dissect Resistance to Tyrosine Kinase Inhibitors in TEL/ABL Positive Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3637-3637.	1.4	0
162	Loss of Pigh Expression Frequently Results in a GPI-Negative Subclone Lacking CD52 Membrane Expression, Conferring Alemtuzumab Resistance to B Cell Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1435-1435.	1.4	0

#	Article	IF	CITATIONS
163	A Polyclonal Population of Piga Mutant CD52 and GPI Anchor Negative T Cells Can Give Early Immune Protection after Alemtuzumab-Based T Cell Depleted Allogeneic Stem Cell Transplantation. Blood, 2015, 126, 3134-3134.	1.4	0
164	GNB1 K89M Drives TKI Resistance in ETV6-ABL1-Positive Leukemia. Blood, 2016, 128, 751-751.	1.4	0
165	The Allo-HLA-DP Restricted T Cell Repertoire Contains a Variety of Tissue-Restricted Specificities with Therapeutic Value. Blood, 2016, 128, 3356-3356.	1.4	0
166	The Scope of Allo-HLA Cross-Reactivity By (Third Party) Virus Specific T Cells Is Surprisingly Affected By HLA Restriction Rather Than Virus Specificity. Blood, 2018, 132, 2048-2048.	1.4	0
167	Prophylactic Infusion of Multi-Antigen Specific T-Cell Products to Prevent Complications after T Cell Depleted Allogeneic Stem Cell Transplantation — a Phase I/II Study. Blood, 2018, 132, 119-119.	1.4	0
168	Isolation and Validation of the First Functional HLA-a*01:01 Restricted EBV-LMP2 Specific T Cells for Treatment of EBV Associated Type II/III Lymphomas. Blood, 2018, 132, 1578-1578.	1.4	0
169	Relative Contribution of NaÃ ⁻ ve and Memory T Cells to Alloreactivity in Hematopoietic Cell Transplantation. Blood, 2019, 134, 1923-1923.	1.4	0
170	HLA-DM Mediates Permissiveness of HLA-DPB1 T Cell Epitope Mismatches in Unrelated HCT. Blood, 2019, 134, 3211-3211.	1.4	0