
Thomas A Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7093393/publications.pdf Version: 2024-02-01

ΤΗΟΜΑς Δ ΗΛΜΙΙΤΟΝ

#	Article	IF	CITATIONS
1	The Cell Biology of Macrophage Activation. Annual Review of Immunology, 1984, 2, 283-318.	21.8	1,535
2	TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages. Nature Immunology, 2002, 3, 392-398.	14.5	753
3	The adaptor Act1 is required for interleukin 17–dependent signaling associated with autoimmune and inflammatory disease. Nature Immunology, 2007, 8, 247-256.	14.5	507
4	Astrocyte expression of mRNA encoding cytokines IPâ€10 and JE/MCPâ€1 in experimental autoimmune encephalomyelitis. FASEB Journal, 1993, 7, 592-600.	0.5	484
5	Synergy between Interferon-γ and Tumor Necrosis Factor-α in Transcriptional Activation Is Mediated by Cooperation between Signal Transducer and Activator of Transcription 1 and Nuclear Factor ήB. Journal of Biological Chemistry, 1997, 272, 14899-14907.	3.4	379
6	Molecular mechanisms of signal transduction in macrophages. Trends in Immunology, 1987, 8, 151-158.	7.5	336
7	Molecular Transductional Mechanisms by which IFNÎ ³ and Other Signals Regulate Macrophage Development. Immunological Reviews, 1987, 97, 5-27.	6.0	261
8	IL-17 Enhances Chemokine Gene Expression through mRNA Stabilization. Journal of Immunology, 2007, 179, 4135-4141.	0.8	257
9	Cutting Edge: The T Cell Chemoattractant IFN-Inducible Protein 10 Is Essential in Host Defense Against Viral-Induced Neurologic Disease. Journal of Immunology, 2000, 165, 2327-2330.	0.8	249
10	A critical role for IRAK4 kinase activity in Toll-like receptor–mediated innate immunity. Journal of Experimental Medicine, 2007, 204, 1025-1036.	8.5	227
11	Inhibition of IFN-γ-Induced Class II Transactivator Expression by a 19-kDa Lipoprotein from <i>Mycobacterium tuberculosis</i> : A Potential Mechanism for Immune Evasion. Journal of Immunology, 2003, 171, 175-184.	0.8	226
12	A chemokine-to-cytokine-to-chemokine cascade critical in antiviral defense. Journal of Clinical Investigation, 2000, 105, 985-993.	8.2	213
13	Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nature Immunology, 2011, 12, 853-860.	14.5	199
14	Identification of transferrin receptors on the surface of human cultured cells Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 6406-6410.	7.1	183
15	The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nature Immunology, 2011, 12, 844-852.	14.5	174
16	A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. Journal of Experimental Medicine, 2015, 212, 1571-1587.	8.5	170
17	Myeloid Colony-Stimulating Factors as Regulators of Macrophage Polarization. Frontiers in Immunology, 2014, 5, 554.	4.8	160
18	Monokine Induced by IFN-Î ³ Is a Dominant Factor Directing T Cells into Murine Cardiac Allografts During Acute Rejection. Journal of Immunology, 2001, 167, 3494-3504.	0.8	150

#	Article	IF	CITATIONS
19	Myeloid-Derived Suppressor Cell Subset Accumulation in Renal Cell Carcinoma Parenchyma Is Associated with Intratumoral Expression of IL1β, IL8, CXCL5, and Mip-1α. Clinical Cancer Research, 2017, 23, 2346-2355.	7.0	148
20	Expression of Mig (Monokine Induced by Interferon-γ) Is Important in T Lymphocyte Recruitment and Host Defense Following Viral Infection of the Central Nervous System. Journal of Immunology, 2001, 166, 1790-1795.	0.8	143
21	TRPV4 Mechanosensitive Ion Channel Regulates Lipopolysaccharide-Stimulated Macrophage Phagocytosis. Journal of Immunology, 2016, 196, 428-436.	0.8	134
22	A macrophage LPS-inducible early gene encodes the murine homologue of IP-10. Biochemical and Biophysical Research Communications, 1990, 168, 1261-1267.	2.1	110
23	Heterogeneity in Control of mRNA Stability by AU-rich Elements. Journal of Biological Chemistry, 2003, 278, 12085-12093.	3.4	110
24	Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. Journal of Leukocyte Biology, 2004, 75, 641-648.	3.3	110
25	Renal cell carcinoma–derived gangliosides suppress nuclear factor-κB activation in T cells. Journal of Clinical Investigation, 1999, 104, 769-776.	8.2	110
26	Tristetraprolin Regulates CXCL1 (KC) mRNA Stability. Journal of Immunology, 2008, 180, 2545-2552.	0.8	103
27	Interleukin-4/STAT6 Represses STAT1 and NF-κB-dependent Transcription through Distinct Mechanisms. Journal of Biological Chemistry, 2000, 275, 38095-38103.	3.4	94
28	Regulation of tumor necrosis factor (TNF) expression: Interferon-Î ³ enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cellular Immunology, 1987, 109, 437-443.	3.0	93
29	IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nature Immunology, 2018, 19, 354-365.	14.5	91
30	Tissue-specific expression of murine IP-10 mRNA following systemic treatment with interferon γ. Journal of Leukocyte Biology, 1992, 52, 27-33.	3.3	86
31	STAT6 Is Required for the Anti-inflammatory Activity of Interleukin-4 in Mouse Peritoneal Macrophages. Journal of Biological Chemistry, 1998, 273, 29202-29209.	3.4	85
32	Groα-mediated recruitment of neutrophils is required for elicitation of contact hypersensitivity. European Journal of Immunology, 1999, 29, 3485-3495.	2.9	85
33	Interleukin-1 Receptor-associated Kinase 2 Is Critical for Lipopolysaccharide-mediated Post-transcriptional Control. Journal of Biological Chemistry, 2009, 284, 10367-10375.	3.4	83
34	HuR Is Required for IL-17–Induced Act1-Mediated CXCL1 and CXCL5 mRNA Stabilization. Journal of Immunology, 2013, 191, 640-649.	0.8	83
35	IL-17 Signaling for mRNA Stabilization Does Not Require TNF Receptor-Associated Factor 6. Journal of Immunology, 2009, 182, 1660-1666.	0.8	82
36	IL-17R–EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. Journal of Experimental Medicine, 2019, 216, 195-214.	8.5	82

#	Article	IF	CITATIONS
37	Immune-inflammatory mechanisms in IFNÎ ³ -mediated anti-tumor activity. Seminars in Cancer Biology, 2000, 10, 113-123.	9.6	73
38	Regulation of Chemokine Expression by Antiinflammatory Cytokines. Immunologic Research, 2002, 25, 229-246.	2.9	73
39	IL-17 Regulates CXCL1 mRNA Stability via an AUUUA/Tristetraprolin-Independent Sequence. Journal of Immunology, 2010, 184, 1484-1491.	0.8	72
40	IL-4 Pretreatment Selectively Enhances Cytokine and Chemokine Production in Lipopolysaccharide-Stimulated Mouse Peritoneal Macrophages. Journal of Immunology, 2002, 168, 2456-2463.	0.8	71
41	Regulation of Macrophage Gene Expression by Pro- and Anti-Inflammatory Cytokines. Pathobiology, 1999, 67, 241-244.	3.8	70
42	Cell Type and Stimulus Specific Regulation of Chemokine Gene Expression. Biochemical and Biophysical Research Communications, 1994, 198, 590-596.	2.1	68
43	Expression of the transferrin receptor on murine peritoneal macrophages is modulated by in vitro treatment with interferon gamma. Cellular Immunology, 1984, 89, 478-488.	3.0	63
44	Interleukin-1-mediated Stabilization of Mouse KC mRNA Depends on Sequences in both 5â€2- and 3â€2-Untranslated Regions. Journal of Biological Chemistry, 2000, 275, 12987-12993.	3.4	61
45	The effects of oxidized low density lipoproteins on inducible mouse macrophage gene expression are gene and stimulus dependent Journal of Clinical Investigation, 1995, 95, 2020-2027.	8.2	61
46	Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection withPseudomonas aeruginosain mice. Immunology, 2002, 107, 297-305.	4.4	60
47	Introns Regulate the Rate of Unstable mRNA Decay. Journal of Biological Chemistry, 2007, 282, 20230-20237.	3.4	59
48	Regulation of transferrin receptor expression in concanavalin a stimulated and gross virus transformed rat lymphoblasts. Journal of Cellular Physiology, 1982, 113, 40-46.	4.1	58
49	Immunosuppression following 7,12-dimethylbenz[a]anthracene exposure in B6C3F1 mice—II. Altered cell-mediated immunity and tumor resistance. International Journal of Immunopharmacology, 1986, 8, 189-198.	1.1	57
50	Interleukin-10 Suppresses IP-10 Gene Transcription by Inhibiting the Production of Class I Interferon. Blood, 1998, 92, 4742-4749.	1.4	57
51	Effects of bacterial lipopolysaccharide on protein synthesis in murine peritoneal macrophages: Relationship to activation for macrophage tumoricidal function. Journal of Cellular Physiology, 1986, 128, 9-17.	4.1	56
52	The effect of macrophage development on the release of reactive oxygen intermediates and lipid oxidation products, and their ability to induce oxidative DNA damage in mammalian cells. Carcinogenesis, 1986, 7, 813-818.	2.8	56
53	Impaired Activation of NFκB in T Cells From a Subset of Renal Cell Carcinoma Patients Is Mediated by Inhibition of Phosphorylation and Degradation of the Inhibitor, IκB. Blood, 1998, 92, 1334-1341.	1.4	55
54	Regulation of Chemokine mRNA Stability by Lipopolysaccharide and IL-10. Journal of Immunology, 2003, 170, 6202-6208.	0.8	55

#	Article	IF	CITATIONS
55	Distinct Temporal Patterns of Macrophage-Inflammatory Protein-2 and KC Chemokine Gene Expression in Surgical Injury. Journal of Immunology, 2002, 168, 3586-3594.	0.8	52
56	Smooth muscle cell surface tissue factor pathway activation by oxidized low-density lipoprotein requires cellular lipid peroxidation. Blood, 2000, 96, 3056-3063.	1.4	50
57	Interferon-Stimulated Response Element and NFκB Sites Cooperate to Regulate Double-Stranded RNA-Induced Transcription of the IP-10 Gene. Journal of Interferon Research, 1994, 14, 357-363.	1.2	49
58	Intraallograft Chemokine RNA and Protein During Rejection of MHC-Matched/Multiple Minor Histocompatibility-Disparate Skin Grafts. Journal of Immunology, 2000, 164, 6027-6033.	0.8	49
59	Lipopolysaccharide Induces Formyl Peptide Receptor 1 Gene Expression in Macrophages and Neutrophils via Transcriptional and Posttranscriptional Mechanisms. Journal of Immunology, 2005, 175, 6085-6091.	0.8	49
60	IL-17A–Induced PLET1 Expression Contributes to Tissue Repair and Colon Tumorigenesis. Journal of Immunology, 2017, 199, 3849-3857.	0.8	49
61	IL-10 suppresses LPS-induced KC mRNA expression via a translation-dependent decrease in mRNA stability. Journal of Leukocyte Biology, 1998, 64, 33-39.	3.3	47
62	All- <i>trans</i> Retinoic Acid Induces Arginase-1 and Inducible Nitric Oxide Synthase–Producing Dendritic Cells with T Cell Inhibitory Function. Journal of Immunology, 2014, 192, 5098-5108.	0.8	47
63	A CC′ Loop Decoy Peptide Blocks the Interaction Between Act1 and IL-17RA to Attenuate IL-17– and IL-25–Induced Inflammation. Science Signaling, 2011, 4, ra72.	3.6	44
64	A lipopolysaccharide-inducible macrophage gene (D3) is a new member of an interferon-inducible gene cluster and is selectively expressed in mononuclear phagocytes. Journal of Leukocyte Biology, 1993, 53, 563-568.	3.3	43
65	Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines Proceedings of the United States of America, 1979, 76, 323-327.	7.1	41
66	Chemokine expression in trinitrochlorobenzene-mediated contact hypersensitivity. Journal of Leukocyte Biology, 1994, 55, 452-460.	3.3	41
67	Interleukin 1α-induced NFκB Activation and Chemokine mRNA Stabilization Diverge at IRAK1. Journal of Biological Chemistry, 2008, 283, 15689-15693.	3.4	41
68	Stress-sensitive Regulation of IFRD1 mRNA Decay Is Mediated by an Upstream Open Reading Frame. Journal of Biological Chemistry, 2010, 285, 8552-8562.	3.4	38
69	Chemokine and chemoattractant receptor expression: post-transcriptional regulation. Journal of Leukocyte Biology, 2007, 82, 213-219.	3.3	37
70	Characterization of protein kinase C activity in interferon gamma treated murine peritoneal macrophages. Journal of Cellular Physiology, 1985, 125, 485-491.	4.1	36
71	Regulation of macrophage gene expression by T-cell-derived lymphokines. , 1994, 63, 235-264.		35
72	Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. Journal of Leukocyte Biology, 2012, 91, 377-383.	3.3	33

#	Article	IF	CITATIONS
73	Mediators of Inflammation-Driven Expansion, Trafficking, and Function of Tumor-Infiltrating MDSCs. Cancer Immunology Research, 2019, 7, 1687-1699.	3.4	33
74	Biochemical models of interferon- ^{ĵ3} -mediated macrophage activation: Independent regulation of lymphocyte function associated antigen (LFA)-1 and I-A antigen on murine peritoneal macrophages. Cellular Immunology, 1986, 97, 110-120.	3.0	32
75	Diversity in post-transcriptional control of neutrophil chemoattractant cytokine gene expression. Cytokine, 2010, 52, 116-122.	3.2	31
76	Oxidized LDL modulates activation of NFκB in mononuclear phagocytes by altering the degradation of IκBs. Journal of Leukocyte Biology, 1998, 64, 667-674.	3.3	29
77	Homologous and heterologous desensitization of proto-oncogene cfos expression in murine peritoneal macrophages. Journal of Cellular Physiology, 1987, 131, 36-42.	4.1	28
78	TGFÎ ² inhibits LPS-induced chemokine mRNA stabilization. Blood, 2003, 102, 1178-1185.	1.4	28
79	Cellular Stress Amplifies TLR3/4-Induced CXCL1/2 Gene Transcription in Mononuclear Phagocytes via RIPK1. Journal of Immunology, 2014, 193, 879-888.	0.8	28
80	Modulation of Na+/K+ exchange potentiates lipopolysaccharide-induced gene expression in murine peritoneal macrophages. Journal of Cellular Physiology, 1991, 148, 96-105.	4.1	27
81	Toll IL-1 Receptors Differ in Their Ability to Promote the Stabilization of Adenosine and Uridine-Rich Elements Containing mRNA. Journal of Immunology, 2004, 173, 2755-2761.	0.8	27
82	The early competence genes JE and KC are differentially regulated in murine peritoneal macrophages in response to lipopolysaccharide. Biochemical and Biophysical Research Communications, 1987, 149, 969-974.	2.1	26
83	Quiescent lymphocytes express intracellular transferrin receptors. Biochemical and Biophysical Research Communications, 1984, 119, 598-602.	2.1	24
84	Excretory/secretory products from plerocercoids of Spirometra erinacei reduce iNOS and chemokine mRNA levels in peritoneal macrophages stimulated with cytokines and/or LPS. Parasite Immunology, 1997, 19, 325-335.	1.5	23
85	Lipopolysaccharide-induced expression of the competence gene KC in vascular endothelial cells is mediated through protein kinase C. Journal of Cellular Physiology, 1989, 140, 44-51.	4.1	22
86	Functionally Independent AU-rich Sequence Motifs Regulate KC (CXCL1) mRNA. Journal of Biological Chemistry, 2005, 280, 30166-30174.	3.4	22
87	IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs. ELife, 2017, 6, .	6.0	22
88	Expression of Human Placental Cell Surface Antigens on Peripheral Blood Lymphocytes and Lymphoblastoid Cell Lines. Scandinavian Journal of Immunology, 1980, 11, 195-201.	2.7	21
89	Neuron-Specific HuR-Deficient Mice Spontaneously Develop Motor Neuron Disease. Journal of Immunology, 2018, 201, 157-166.	0.8	21
90	Receptor-mediated endocytosis and exocytosis of transferrin in concanavalin A-stimulated rat lymphoblasts. Journal of Cellular Physiology, 1983, 114, 222-228.	4.1	20

#	Article	IF	CITATIONS
91	Okadaic Acid Stimulates Inflammatory Cytokine Gene Transcription in Murine Peritoneal Macrophages. Cellular Immunology, 1994, 153, 479-491.	3.0	20
92	Respiratory burst in murine peritoneal macrophages: Differential sensitivity to phorbol diesters by macrophages in different states of functional activation. Cellular Immunology, 1986, 100, 400-410.	3.0	17
93	TLR2 and TLR4 agonists stimulate unique repertoires of host resistance genes in murine macrophages: interferon-β-dependent signaling in TLR4-mediated responses. Journal of Endotoxin Research, 2003, 9, 169-175.	2.5	17
94	Ex vivo conditioning with IL-12 protects tumor-infiltrating CD8+ T cells from negative regulation by local IFN-Î ³ . Cancer Immunology, Immunotherapy, 2019, 68, 395-405.	4.2	17
95	Biosynthesis of mammalian transfer RNA. Evidence for regulation by deacylated transfer RNA. Nucleic Acids and Protein Synthesis, 1976, 435, 362-375.	1.7	16
96	Human placental cell surface antigens: Expression by cultured cells of diverse phenotypic origin. Journal of Supramolecular Structure, 1979, 11, 503-515.	2.3	16
97	Dexamethasone selectively regulates LPS-inducible gene expression in murine peritoneal macrophages. Immunopharmacology, 1990, 19, 93-101.	2.0	16
98	Sensitivity to macrophage-mediated cytostasis is cell cycle dependent. Cellular Immunology, 1982, 69, 363-373.	3.0	15
99	Signaling in Lipopolysaccharide-Induced Stabilization of Formyl Peptide Receptor 1 mRNA in Mouse Peritoneal Macrophages. Journal of Immunology, 2007, 178, 2542-2548.	0.8	13
100	Murine monocytes express transferrin receptors: Evidence for similarity to inflammatory macrophages. Cellular Immunology, 1984, 88, 343-349.	3.0	12
101	Fc-receptor mediated protein phosphorylation in murine peritoneal macrophages. Biochemical and Biophysical Research Communications, 1984, 124, 197-202.	2.1	12
102	The effect of formaldehyde exposure upon the mononuclear phagocyte system of mice*1. Toxicology and Applied Pharmacology, 1987, 88, 165-174.	2.8	12
103	Lipopolysaccharide induces competence genes JE and KC in Balb/C 3T3 cells. Journal of Cellular Physiology, 1990, 144, 77-83.	4.1	12
104	LPS Does Not Directly Induce STAT Activity in Mouse Macrophages. Cellular Immunology, 1996, 170, 20-24.	3.0	12
105	Unfolded Protein Response Differentially Regulates TLR4-Induced Cytokine Expression in Distinct Macrophage Populations. Frontiers in Immunology, 2019, 10, 1390.	4.8	12
106	Amino Acid Control of Stable RNA Synthesis in Friend Leukemia Cells in Relation to Intracellular Purine Nucleoside Triphosphate Levels. FEBS Journal, 1977, 77, 495-499.	0.2	11
107	Oxidized LDL potentiates LPS-induced transcription of the chemokine KC gene. Journal of Leukocyte Biology, 1996, 59, 940-947.	3.3	10
108	IL-4 Inhibits Expression of the Formyl Peptide Receptor Gene in Mouse Peritoneal Macrophages. Journal of Interferon and Cytokine Research, 2005, 25, 11-19.	1.2	10

#	Article	IF	CITATIONS
109	Characterization of the recognition of target cells sensitive to or resistant to cytolysis by activated macrophages. Cellular Immunology, 1982, 68, 155-164.	3.0	8
110	Activated macrophages selectively bind both normal and neoplastic lymphoblasts but not quiescent lymphocytes. Cellular Immunology, 1982, 72, 332-339.	3.0	8
111	cEBP Homologous Protein Expression in Macrophages Regulates the Magnitude and Duration of IL-6 Expression and Dextran Sodium Sulfate Colitis. Journal of Interferon and Cytokine Research, 2015, 35, 785-794.	1.2	7
112	Thrombin-induced expression of the KC gene in cultured aortic endothelial cells. Involvement of proteolytic activity and protein kinase C. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1049, 145-150.	2.4	6
113	Diversity in sequence-dependent control of GRO chemokine mRNA half-life. Journal of Leukocyte Biology, 2013, 93, 895-904.	3.3	6
114	Alkaline phosphatase isoenzyme expression in chang liver cells. Experimental Cell Research, 1979, 122, 31-38.	2.6	5
115	Macrophage-mediated cytostatic activity blocks lymphoblast cell cycle progression independently in both G1 phase and S phase. Cellular Immunology, 1983, 77, 233-241.	3.0	3
116	A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. Journal of Cell Biology, 2015, 210, 2106OIA178.	5.2	1
117	Interleukin-10 Suppresses IP-10 Gene Transcription by Inhibiting the Production of Class I Interferon. Blood, 1998, 92, 4742-4749.	1.4	1
118	Dolph Oliver Adams, M.D., Ph.D. Journal of Leukocyte Biology, 1996, 60, 675-676.	3.3	0
119	Preface: The Many Faces of Interferon Signaling. Journal of Interferon and Cytokine Research, 2005, 25, 731-731.	1.2	0
120	A Note from the Editors: Manuscript Retraction. Journal of Interferon and Cytokine Research, 2006, 26, 848-848.	1.2	0
121	Interferon: The First Cytokine. Journal of Interferon and Cytokine Research, 2007, 27, 1-1.	1.2	0