
Maria Teresa Capria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7092311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution. Nature Astronomy, 2022, 6, 546-553.	10.1	20
2	Thermal inertia of Occator's faculae on Ceres. Planetary and Space Science, 2021, 205, 105285.	1.7	0
3	High Thermal Inertia Zones on Ceres From Dawn Data. Journal of Geophysical Research E: Planets, 2020, 125, e2018JE005733.	3.6	9
4	Investigating the Rosetta/RTOF observations of comet 67P/Churyumov-Gerasimenko using a comet nucleus model: influence of dust mantle and trapped CO. Astronomy and Astrophysics, 2020, 638, A106.	5.1	7
5	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	47
6	Development of a simulator of the SIMBIOSYS suite onboard the BepiColombo mission. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1673-1689.	4.4	1
7	Exocomets from a Solar System Perspective. Publications of the Astronomical Society of the Pacific, 2020, 132, 101001.	3.1	16
8	Analysis of night-side dust activity on comet 67P observed by VIRTIS-M: a new method to constrain the thermal inertia on the surface. Astronomy and Astrophysics, 2019, 630, A21.	5.1	8
9	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	10.1	34
10	SIMBIO-SYS/STC stereo camera calibration: Geometrical distortion. Review of Scientific Instruments, 2019, 90, 043106.	1.3	6
11	VIRTIS-H observations of the dust coma of comet 67P/Churyumov-Gerasimenko: spectral properties and color temperature variability with phase and elevation. Astronomy and Astrophysics, 2019, 630, A22.	5.1	17
12	Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23.	5.1	9
13	Performance evaluation of the SIMBIO-SYS Stereo Imaging Channel on board BepiColombo/ESA spacecraft. Measurement: Journal of the International Measurement Confederation, 2019, 135, 828-835.	5.0	5
14	67P/Churyumov–Gerasimenko active areas before perihelion identified by GIADA and VIRTIS data fusion. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2165-2176.	4.4	8
15	Compositional differences among Bright Spots on the Ceres surface. Icarus, 2019, 320, 202-212.	2.5	33
16	Mineralogical mapping of the Kerwan quadrangle on Ceres. Icarus, 2019, 318, 188-194.	2.5	8
17	Mineralogy of the Urvara–Yalode region on Ceres. Icarus, 2019, 318, 241-250.	2.5	6
18	Photometry of Ceres and Occator faculae as inferred from VIR/Dawn data. Icarus, 2019, 320, 97-109.	2.5	17

2

#	Article	IF	CITATIONS
19	Mineralogy and temperature of crater Haulani on Ceres. Meteoritics and Planetary Science, 2018, 53, 1902-1924.	1.6	21
20	Nature, formation, and distribution of carbonates on Ceres. Science Advances, 2018, 4, e1701645.	10.3	83
21	Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle. Science Advances, 2018, 4, eaao3757.	10.3	43
22	Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations. Astronomy and Astrophysics, 2018, 616, A122.	5.1	42
23	The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies. Advances in Space Research, 2018, 62, 2306-2316.	2.6	8
24	Localized aliphatic organic material on the surface of Ceres. Science, 2017, 355, 719-722.	12.6	152
25	Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S443-S458.	4.4	56
26	Cometary coma dust size distribution from in situ IR spectra. Monthly Notices of the Royal Astronomical Society, 2017, 469, S598-S605.	4.4	12
27	How pristine is the interior of the comet 67P/Churyumov–Gerasimenko?. Monthly Notices of the Royal Astronomical Society, 2017, 469, S685-S694.	4.4	22
28	Photometric behaviour of 67P/Churyumov–Gerasimenko and analysis of its pre-perihelion diurnal variations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S346-S356.	4.4	16
29	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	5.1	67
30	Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy and Astrophysics, 2016, 589, A45.	5.1	62
31	Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P. Icarus, 2016, 277, 78-97.	2.5	61
32	Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 2016, 272, 32-47.	2.5	127
33	Evolution of CO ₂ , CH ₄ , and OCS abundances relative to H ₂ O in the coma of comet 67P around perihelion from <i>Rosetta</i> /VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S170-S183.	4.4	72
34	Distribution of phyllosilicates on the surface of Ceres. Science, 2016, 353, .	12.6	159
35	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
36	Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity. Proceedings of the International Astronomical Union, 2016, 12, 316-319.	0.0	2

#	Article	IF	CITATIONS
37	Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 2016, 536, 54-57.	27.8	240
38	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
39	Ceres water regime: surface temperature, water sublimation and transient exo(atmo)sphere. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1892-1904.	4.4	35
40	Separation of thermal inertia and roughness effects from Dawn/VIR measurements of Vesta surface temperatures in the vicinity of Marcia Crater. Icarus, 2015, 262, 30-43.	2.5	6
41	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 2015, 528, 241-244.	27.8	276
42	IDIS Small Bodies and Dust Node: Technical innovation and science. Advances in Space Research, 2015, 55, 747-752.	2.6	0
43	Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies. Icarus, 2015, 252, 1-21.	2.5	62
44	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
45	Detection of new olivine-rich locations on Vesta. Icarus, 2015, 258, 120-134.	2.5	37
46	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	27.8	199
47	Asteroid Thermophysical Modeling. , 2015, , .		55
48	Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research E: Planets, 2014, 119, 2078-2108.	3.6	33
49	Composition and mineralogy of dark material units on Vesta. Icarus, 2014, 240, 58-72.	2.5	41
50	Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR. Icarus, 2014, 240, 36-57.	2.5	52
51	Planetary Science Virtual Observatory architecture. Astronomy and Computing, 2014, 7-8, 71-80.	1.7	10
52	Spectral analysis of the bright materials on the asteroid Vesta. Icarus, 2014, 240, 73-85.	2.5	26
53	Compositional evidence of magmatic activity on Vesta. Geophysical Research Letters, 2014, 41, 3038-3044.	4.0	12
54	Vesta surface thermal properties map. Geophysical Research Letters, 2014, 41, 1438-1443.	4.0	46

4

#	Article	IF	CITATIONS
55	Olivine in an unexpected location on Vesta's surface. Nature, 2013, 504, 122-125.	27.8	82
56	Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 2012, 491, 83-86.	27.8	151
57	The activity of main belt comets. Astronomy and Astrophysics, 2012, 537, A71.	5.1	27
58	Pitted Terrain on Vesta and Implications for the Presence of Volatiles. Science, 2012, 338, 246-249.	12.6	91
59	DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE <i>DAWN</i>) MISSION. Astrophysical Journal Letters, 2012, 758, L36.	8.3	117
60	Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta. Science, 2012, 336, 697-700.	12.6	240
61	Spectral and mineralogical characterization of inner main-belt V-type asteroids. Astronomy and Astrophysics, 2011, 533, A77.	5.1	38
62	Mineralogical characterization of some V-type asteroids, in support of the NASAâ€,Dawnâ€,missionâ~ Monthly Notices of the Royal Astronomical Society, 2011, 412, 2318-2332.	4.4	30
63	The VIR Spectrometer. Space Science Reviews, 2011, 163, 329-369.	8.1	217
64	Shape and obliquity effects on the thermal evolution of the Rosetta target 67P/Churyumov-Gerasimenko cometary nucleus. Icarus, 2010, 207, 341-358.	2.5	38
65	SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION. Astronomical Journal, 2010, 140, 1-13.	4.7	14
66	The VIR Spectrometer. , 2010, , 329-369.		4
67	Thermal modeling of the active Centaur P/2004 A1 (LONEOS). Astronomy and Astrophysics, 2009, 504, 249-258.	5.1	6
68	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
69	Catalog of the emission lines in the visible spectrum of comet 153P/Ikeya-Zhang. Astronomy and Astrophysics, 2007, 461, 789-792.	5.1	17
70	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	8.1	181
71	Exploring the asteroid belt with ion propulsion: Dawn mission history, status and plans. Advances in Space Research, 2007, 40, 193-201.	2.6	32
72	V-type asteroids: A mineralogical study. Advances in Space Research, 2006, 38, 1987-1990.	2.6	6

#	Article	IF	CITATIONS
73	67P/Churyumov–Gerasimenko nucleus model: Portrayal of the Rosetta target. Advances in Space Research, 2006, 38, 1906-1910.	2.6	8
74	The interior of outer Solar System bodies. Proceedings of the International Astronomical Union, 2005, 1, 395-411.	0.0	1
75	Thermal evolution modelÂof 67P/Churyumov-Gerasimenko, theÂnew Rosetta target. Astronomy and Astrophysics, 2005, 444, 605-614.	5.1	35
76	O(\$^{mathsf 1}\$S) and O(\$^{mathsf 1}\$D) emission lines in the spectrum of 153P/2002 C1 (Ikeya-Zhang). Astronomy and Astrophysics, 2005, 442, 1121-1126.	5.1	20
77	Mineralogical characterization of some basaltic asteroids in the neighborhood of (4) Vesta: first results. Icarus, 2004, 171, 120-132.	2.5	61
78	Mapping the elemental composition of Ceres and Vesta: Dawn"s gamma ray and neutron detector. , 2004, , .		7
79	Spin Temperatures of Ammonia and Water Molecules in Comets. Astrophysical Journal, 2004, 601, 1152-1158.	4.5	51
80	Models of P/Borrelly: Activity and dust mantle formation. Advances in Space Research, 2003, 31, 2519-2525.	2.6	8
81	Modelling of cometary nuclei: Planetary missions preparation. Advances in Space Research, 2003, 31, 2543-2553.	2.6	17
82	Numerical simulations of the radiance from the comet 46P/Wirtanen in the various configurations of the measurements during "Rosetta―mission. Advances in Space Research, 2003, 31, 2501-2510.	2.6	1
83	A model of the activity of comet wild 2. Advances in Space Research, 2002, 29, 709-714.	2.6	5
84	C/1995 O1 Hale–Bopp: Short and Long Distance activity from a Theoretical Model. Earth, Moon and Planets, 2002, 90, 217-225.	0.6	18
85	MARS-IRMA: in-situ infrared microscope analysis of Martian soil and rock samples Advances in Space Research, 2001, 28, 1219-1224.	2.6	5
86	MA_MISS: Mars multispectral imager for subsurface studies. Advances in Space Research, 2001, 28, 1203-1208.	2.6	16
87	P/Wirtanen thermal evolution: effects due to the presence of an organic component in the refractory material. Planetary and Space Science, 2001, 49, 907-918.	1.7	16
88	Thermal Evolution and Differentiation of Edgeworth–Kuiper Belt Objects. Astronomical Journal, 2001, 121, 2792-2799.	4.7	68
89	Sublimation Mechanisms of Comet Nuclei. Earth, Moon and Planets, 2000, 89, 161-178.	0.6	15
90	Thermal evolution and differentiation of a short-period comet. Planetary and Space Science, 1993, 41, 409-427.	1.7	33

#	Article	IF	CITATIONS
91	The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis. Monthly Notices of the Royal Astronomical Society, 0, , stw3281.	4.4	13