Alberto Quintana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091734/publications.pdf Version: 2024-02-01

ALREDTO OLUNTANA

#	Article	IF	CITATIONS
1	Voltage control of magnetism with magneto-ionic approaches: Beyond voltage-driven oxygen ion migration. Applied Physics Letters, 2022, 120, .	3.3	13
2	Bendable Polycrystalline and Magnetic CoFe ₂ O ₄ Membranes by Chemical Methods. ACS Applied Materials & Interfaces, 2022, 14, 12845-12854.	8.0	17
3	Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption. Nature Communications, 2022, 13, 1350.	12.8	30
4	Voltage-driven strain-mediated modulation of exchange bias in Ir ₂₀ Mn ₈₀ /Fe ₈₀ Ga ₂₀ /Ta/ âŸ` 011⟩-oriented PMN- heterostructures. Applied Physics Letters, 2022, 120, 142406.	32 9. B	2
5	Magnetic structure and internal field nuclear magnetic resonance of cobalt nanowires. Physical Chemistry Chemical Physics, 2022, 24, 11898-11909.	2.8	4
6	Efficient and Robust Metallic Nanowire Foams for Deep Submicrometer Particulate Filtration. Nano Letters, 2021, 21, 2968-2974.	9.1	15
7	Magneto-Ionics in Single-Layer Transition Metal Nitrides. ACS Applied Materials & Interfaces, 2021, 13, 30826-30834.	8.0	13
8	The Accessibility of the Cell Wall in Scots Pine (Pinus sylvestris L.) Sapwood to Colloidal Fe3O4 Nanoparticles. ACS Omega, 2021, 6, 21719-21729.	3.5	4
9	Electrically Enhanced Exchange Bias via Solid-State Magneto-ionics. ACS Applied Materials & Interfaces, 2021, 13, 38916-38922.	8.0	16
10	Critical Role of Electrical Resistivity in Magnetoionics. Physical Review Applied, 2021, 16, .	3.8	6
11	Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO. Journal of Magnetism and Magnetic Materials, 2021, 540, 168479.	2.3	6
12	Voltage-driven motion of nitrogen ions: a new paradigm for magneto-ionics. Nature Communications, 2020, 11, 5871.	12.8	42
13	Systematic Characterization of Hydrophilized Polydimethylsiloxane. Journal of Microelectromechanical Systems, 2020, 29, 1216-1224.	2.5	10
14	Local manipulation of metamagnetism by strain nanopatterning. Materials Horizons, 2020, 7, 2056-2062.	12.2	11
15	Enhancing Magneto-Ionic Effects in Magnetic Nanostructured Films via Conformal Deposition of Nanolayers with Oxygen Acceptor/Donor Capabilities. ACS Applied Materials & Interfaces, 2020, 12, 14484-14494.	8.0	12
16	Boosting Roomâ€Temperature Magnetoâ€Ionics in a Nonâ€Magnetic Oxide Semiconductor. Advanced Functional Materials, 2020, 30, 2003704.	14.9	18
17	Disentangling Highly Asymmetric Magnetoelectric Effects in Engineered Multiferroic Heterostructures. Physical Review Applied, 2019, 12, .	3.8	3
18	Reversible, Electric-Field Induced Magneto-Ionic Control of Magnetism in Mesoporous Cobalt Ferrite Thin Films. Scientific Reports, 2019, 9, 10804.	3.3	21

Alberto Quintana

#	Article	IF	CITATIONS
19	Electrolyte-gated magnetoelectric actuation: Phenomenology, materials, mechanisms, and prospective applications. APL Materials, 2019, 7, .	5.1	66
20	Tunable Magnetism in Nanoporous CuNi Alloys by Reversible Voltageâ€Driven Elementâ€Selective Redox Processes. Small, 2018, 14, e1704396.	10.0	16
21	Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An "All-Chemical―Deposition Approach toward 3D Nanoengineered Composite Layers. ACS Applied Materials & Interfaces, 2018, 10, 14877-14885.	8.0	13
22	Structural and Magnetic Properties of Fe _{<i>x</i>} Cu _{1–<i>x</i>} Sputtered Thin Films Electrochemically Treated To Create Nanoporosity for High-Surface-Area Magnetic Components. ACS Applied Nano Materials, 2018, 1, 1675-1682.	5.0	7
23	Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics. ACS Applied Materials & Interfaces, 2018, 10, 44897-44905.	8.0	26
24	Voltage-Controlled ON–OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film. ACS Nano, 2018, 12, 10291-10300.	14.6	57
25	Reversible and magnetically unassisted voltage-driven switching of magnetization in FeRh/PMN-PT. Applied Physics Letters, 2018, 113, .	3.3	37
26	Large magnetoelectric effects mediated by electric-field-driven nanoscale phase transformations in sputtered (nanoparticulate) and electrochemically dealloyed (nanoporous) Fe–Cu films. Nanoscale, 2018, 10, 14570-14578.	5.6	8
27	Electric-Field-Adjustable Time-Dependent Magnetoelectric Response in Martensitic FeRh Alloy. ACS Applied Materials & Interfaces, 2017, 9, 15577-15582.	8.0	29
28	A facile co-precipitation synthesis of heterostructured ZrO2 ZnO nanoparticles as efficient photocatalysts for wastewater treatment. Journal of Materials Science, 2017, 52, 13779-13789.	3.7	18
29	Magnetic Actuation: Voltageâ€Induced Coercivity Reduction in Nanoporous Alloy Films: A Boost toward Energyâ€Efficient Magnetic Actuation (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
30	Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezoresponse. Materials and Design, 2017, 133, 54-61.	7.0	16
31	Voltageâ€Induced Coercivity Reduction in Nanoporous Alloy Films: A Boost toward Energyâ€Efficient Magnetic Actuation. Advanced Functional Materials, 2017, 27, 1701904.	14.9	41
32	Unraveling the Origin of Magnetism in Mesoporous Cu-Doped SnO2 Magnetic Semiconductors. Nanomaterials, 2017, 7, 348.	4.1	12
33	Structurally and mechanically tunable molybdenum oxide films and patterned submicrometer structures by electrodeposition. Electrochimica Acta, 2015, 173, 705-714.	5.2	27