

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091726/publications.pdf Version: 2024-02-01

Luo Cu

#	Article	IF	CITATIONS
1	Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 2009, 8, 331-336.	27.5	1,731
2	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.	27.5	1,650
3	Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6, 6364.	12.8	637
4	Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nature Materials, 2017, 16, 1243-1251.	27.5	348
5	Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nature Reviews Cancer, 2016, 16, 56-66.	28.4	341
6	Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release. Journal of the American Chemical Society, 2011, 133, 19582-19585.	13.7	335
7	In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature Communications, 2013, 4, 2326.	12.8	303
8	Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity against Cancer Cells. ACS Nano, 2011, 5, 3651-3659.	14.6	276
9	<i>In Vivo</i> Clearance and Toxicity of Monodisperse Iron Oxide Nanocrystals. ACS Nano, 2012, 6, 4947-4954.	14.6	187
10	Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced Biology, 2017, 1, 1600013.	3.0	175
11	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	47.7	161
12	Biphasic Ferrogels for Triggered Drug and Cell Delivery. Advanced Healthcare Materials, 2014, 3, 1869-1876.	7.6	126
13	Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomaterialia, 2017, 62, 82-90.	8.3	120
14	Substrate Stressâ€Relaxation Regulates Scaffold Remodeling and Bone Formation In Vivo. Advanced Healthcare Materials, 2017, 6, 1601185.	7.6	104
15	Size Control of Porous Silicon Nanoparticles by Electrochemical Perforation Etching. Particle and Particle Systems Characterization, 2014, 31, 252-256.	2.3	103
16	Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads. Small, 2010, 6, 2546-2552.	10.0	100
17	Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody. Advanced Materials, 2012, 24, 3981-3987.	21.0	93
18	Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8368-E8377.	7.1	93

Luo Gu

#	Article	IF	CITATIONS
19	The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials, 2016, 83, 249-256.	11.4	85
20	Biomaterials as vectors for the delivery of CRISPR–Cas9. Biomaterials Science, 2019, 7, 1240-1261.	5.4	75
21	The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.	27.5	68
22	Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Scientific Reports, 2019, 9, 13957.	3.3	67
23	RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells. Biomaterials, 2018, 181, 182-188.	11.4	64
24	Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials, 2016, 75, 91-101.	11.4	45
25	Singleâ€5hot Mesoporous Silica Rods Scaffold for Induction of Humoral Responses Against Small Antigens. Advanced Functional Materials, 2020, 30, 2002448.	14.9	31
26	Alginate Hydrogels for <i>In Vivo</i> Bone Regeneration: The Immune Competence of the Animal Model Matters. Tissue Engineering - Part A, 2020, 26, 852-862.	3.1	24
27	Tailored Silica Nanomaterials for Immunotherapy. ACS Central Science, 2018, 4, 527-529.	11.3	15
28	Functional heterogeneity of IFN-γ–licensed mesenchymal stromal cell immunosuppressive capacity on biomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
29	Submolecular Ligand Size and Spacing for Cell Adhesion. Advanced Materials, 2022, 34, e2110340.	21.0	13
30	Probing Membrane Protein Association Using Concentrationâ€Dependent Number and Brightness. Angewandte Chemie - International Edition, 2021, 60, 6503-6508.	13.8	11
31	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	14.9	9
32	Deep learning identification of stiffness markers in breast cancer. Biomaterials, 2022, 285, 121540.	11.4	8
33	Detection of protease activity by FRET using porous silicon as an energy acceptor. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1374-1376.	1.8	7
34	Probing Membrane Protein Association Using Concentrationâ€Đependent Number and Brightness. Angewandte Chemie, 2021, 133, 6577-6582.	2.0	2
35	Nanoparticles for Imunotherapy: Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody (Adv. Mater. 29/2012). Advanced Materials, 2012, 24, 4025-4025.	21.0	1
36	Drug delivery: Magnetic Luminescent Porous Silicon Microparticles for Localized Delivery of Molecular Drug Payloads (Small 22/2010). Small, 2010, 6, 2545-2545.	10.0	0