ClÃjudio N Verani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/709159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Bimetallic Cooperativity Among Water Reduction Catalysts Containing [Co ^{III} Co ^{III}], [Ni ^{II} Ni ^{II}], and [Zn ^{II} Zn ^{II}] Cores. Chemistry - A European Journal, 2022, , .	3.3	1
2	Electron transport through a (terpyridine)ruthenium metallo-surfactant containing a redox-active aminocatechol derivative. Dalton Transactions, 2022, 51, 8425-8436.	3.3	3
3	Reactivity and Mechanisms of Photoactivated Heterometallic [Ru ^{II} Ni ^{II}] and [Ru ^{II} Ni ^{II} Ru ^{II}] Catalysts for Dihydrogen Generation from Water. Angewandte Chemie - International Edition, 2021, 60, 5723-5728.	13.8	6
4	Dual anticancer and antibacterial activities of bismuth compounds based on asymmetric [NN'O] ligands. Journal of Inorganic Biochemistry, 2021, 222, 111522.	3.5	11
5	Reactivity and Mechanisms of Photoactivated Heterometallic [Ru II Ni II] and [Ru II Ni II Ru II] Catalysts for Dihydrogen Generation from Water. Angewandte Chemie, 2021, 133, 5787-5792.	2.0	2
6	Electrochemical Quantification of Corrosion Mitigation on Iron Surfaces with Gallium(III) and Zinc(II) Metallosurfactants. Langmuir, 2020, 36, 14173-14180.	3.5	8
7	Effect of ligand substituents on nickel and copper [N ₄] complexes: electronic and redox behavior, and reactivity towards protons. New Journal of Chemistry, 2019, 43, 12795-12803.	2.8	11
8	A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants. Chemistry - A European Journal, 2019, 25, 14048-14053.	3.3	2
9	Influence of nitro substituents on the redox, electronic, and proton reduction catalytic behavior of phenolate-based [N ₂ O ₃]-type cobalt(<scp>iii</scp>) complexes. Dalton Transactions, 2019, 48, 14669-14677.	3.3	4
10	Observation of current rectification by a new asymmetric iron(<scp>iii</scp>) surfactant in a eutectic Galn LB monolayer Au sandwich. Dalton Transactions, 2018, 47, 6344-6350.	3.3	7
11	An <i>in situ</i> spectroelectrochemical study on the orientation changes of an [Fe ⁱⁱⁱ L ^{N2O3}] metallosurfactant deposited as LB Films on gold electrode surfaces. Dalton Transactions, 2018, 47, 14218-14226.	3.3	14
12	Molecular rectifiers based on five-coordinate iron(<scp>iii</scp>)-containing surfactants. Dalton Transactions, 2018, 47, 14153-14168.	3.3	7
13	Multielectron Redox Chemistry of Transition Metal Complexes Supported by a Nonâ€Innocent N 3 P 2 Ligand: Synthesis, Characterization, and Catalytic Properties. European Journal of Inorganic Chemistry, 2018, 2018, 4133-4141.	2.0	1
14	Observation of current rectification by the new bimetallic iron(<scp>iii</scp>) hydrophobe [FeIII2(L ^{N4O6})] on Au LB-molecule Au devices. Dalton Transactions, 2018, 47, 14352-14361.	3.3	6
15	Immobilization of an Amphiphilic Molecular Cobalt Catalyst on Carbon Black for Ligand-Assisted Water Oxidation. Inorganic Chemistry, 2018, 57, 9748-9756.	4.0	18
16	Deactivation of a Cobalt Catalyst for Water Reduction through Valence Tautomerism. Chemistry - A European Journal, 2017, 23, 9266-9271.	3.3	14
17	Bimetallic Cooperativity in Proton Reduction with an Amidoâ€Bridged Cobalt Catalyst. Chemistry - A European Journal, 2017, 23, 9272-9279.	3.3	21
18	Frontispiece: Bimetallic Cooperativity in Proton Reduction with an Amidoâ€Bridged Cobalt Catalyst. Chemistry - A European Journal, 2017, 23, .	3.3	0

CLÃiudio N Verani

#	Article	IF	CITATIONS
19	A pentadentate nitrogen-rich copper electrocatalyst for water reduction with pH-dependent molecular mechanisms. Dalton Transactions, 2017, 46, 16812-16820.	3.3	21
20	Electronic Modulation of the SOMO–HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification. Chemistry - A European Journal, 2016, 22, 10786-10790.	3.3	13
21	Confirmation of the Rectifying Behavior in a Pentacoordinate [N ₂ O ₂] Iron(III) Surfactant Using a "Eutectic GaIn LB Monolayer Au―Assembly. Journal of Physical Chemistry C, 2016, 120, 10578-10583.	3.1	17
22	Langmuir–Blodgett films of salophen-based metallosurfactants as surface pretreatment coatings for corrosion mitigation. Chemical Communications, 2016, 52, 11155-11158.	4.1	15
23	Efficient electro/photocatalytic water reduction using a [Ni ^{II} (N ₂ Py ₃)] ²⁺ complex. Chemical Communications, 2016, 52, 13357-13360.	4.1	30
24	Efficient water oxidation with electromodified Langmuir–Blodgett films of procatalytic [Co ^{III} (N ₂ O ₃)] metallosurfactants on electrodes. Chemical Communications, 2016, 52, 8440-8443.	4.1	18
25	Evaluation of the coordination preferences and catalytic pathways of heteroaxial cobalt oximes towards hydrogen generation. Chemical Science, 2016, 7, 3264-3278.	7.4	35
26	Efficient Water Oxidation Using CoMnP Nanoparticles. Journal of the American Chemical Society, 2016, 138, 4006-4009.	13.7	510
27	Distinct Proton and Water Reduction Behavior with a Cobalt(III) Electrocatalyst Based on Pentadentate Oximes. Angewandte Chemie, 2015, 127, 7245-7249.	2.0	8
28	Distinct Proton and Water Reduction Behavior with a Cobalt(III) Electrocatalyst Based on Pentadentate Oximes. Angewandte Chemie - International Edition, 2015, 54, 7139-7143.	13.8	21
29	Modulation of electronic and redox properties in phenolate-rich cobalt(iii) complexes and their implications for catalytic proton reduction. Dalton Transactions, 2015, 44, 3454-3466.	3.3	17
30	Ligand Transformations and Efficient Proton/Water Reduction with Cobalt Catalysts Based on Pentadentate Pyridineâ€Rich Environments. Angewandte Chemie - International Edition, 2015, 54, 2105-2110.	13.8	61
31	The Mechanisms of Rectification in Au Molecule Au Devices Based on Langmuir–Blodgett Monolayers of Iron(III) and Copper(II) Surfactants. Angewandte Chemie - International Edition, 2014, 53, 14462-14467.	13.8	22
32	Inhibition of the 26S proteasome as a possible mechanism for toxicity of heavy metal species. Journal of Inorganic Biochemistry, 2014, 132, 96-103.	3.5	3
33	Cationic Copper(II)-containing Surfactants: Molecular Structures, Film Morphology, and Influence on the Alignment of Nematic Mesogens. Inorganic Chemistry, 2014, 53, 5647-5655.	4.0	9
34	Effect of Substituents on the Water Oxidation Activity of [Ru ^{II} (terpy)(phen)Cl] ⁺ Procatalysts. Inorganic Chemistry, 2014, 53, 3311-3319.	4.0	16
35	Electronic and interfacial behavior of gemini metallosurfactants with copper(ii)/pseudohalide cascade cores. Dalton Transactions, 2013, 42, 15296.	3.3	11
36	Rectification in Nanoscale Devices Based on an Asymmetric Fiveâ€Coordinate Iron(III) Phenolate Complex. Angewandte Chemie - International Edition, 2013, 52, 13346-13350.	13.8	27

CLÃiudio N Verani

#	Article	IF	CITATIONS
37	Probing chemical reduction in a cobalt(III) complex as a viable route for the inhibition of the 20S proteasome. Inorganica Chimica Acta, 2012, 393, 269-275.	2.4	12
38	Sequential Phenolate Oxidations in Octahedral Cobalt(III) Complexes with [N2O3] Ligands. European Journal of Inorganic Chemistry, 2012, 2012, 4622-4631.	2.0	15
39	Bioinspired Fiveâ€Coordinate Iron(III) Complexes for Stabilization of Phenoxyl Radicals. Angewandte Chemie - International Edition, 2012, 51, 3178-3182.	13.8	48
40	Back Cover: Bioinspired Five-Coordinate Iron(III) Complexes for Stabilization of Phenoxyl Radicals (Angew. Chem. Int. Ed. 13/2012). Angewandte Chemie - International Edition, 2012, 51, 3276-3276.	13.8	0
41	Metal complexes as inhibitors of the 26S proteasome in tumor cells. Journal of Inorganic Biochemistry, 2012, 106, 59-67.	3.5	42
42	Unexpected Formation of a Cobalt(III) Phenoxazinylate Electron Reservoir. European Journal of Inorganic Chemistry, 2012, 2012, 463-466.	2.0	21
43	Investigation of the Electronic, Photosubstitution, Redox, and Surface Properties of New Ruthenium(II)-Containing Amphiphiles. Inorganic Chemistry, 2011, 50, 969-977.	4.0	16
44	Modeling the Geometric, Electronic, and Redox Properties of Iron(III)-Containing Amphiphiles with Asymmetric [NNâ€2O] Headgroups. Inorganic Chemistry, 2011, 50, 8356-8366.	4.0	15
45	Effects of tethered ligands and of metal oxidation state on the interactions of cobalt complexes with the 26S proteasome. Journal of Inorganic Biochemistry, 2011, 105, 1759-1766.	3.5	13
46	A Modular Approach to Redox-Active Multimetallic Hydrophobes of Discoid Topology. Inorganic Chemistry, 2010, 49, 7226-7228.	4.0	14
47	On the Effect of Coordination and Protonation Preferences in the Amphiphilic Behavior of Metallosurfactants with Asymmetric Headgroups. European Journal of Inorganic Chemistry, 2009, 2009, 345-356.	2.0	25
48	Metalloamphiphiles with [Cu ₂] and [Cu ₄] Headgroups: Syntheses, Structures, Langmuir Films, and Effect of Subphase Changes. European Journal of Inorganic Chemistry, 2009, 2009, 4686-4694.	2.0	10
49	Metals in anticancer therapy: Copper(II) complexes as inhibitors of the 20S proteasome. European Journal of Medicinal Chemistry, 2009, 44, 4353-4361.	5.5	98
50	Comparative Activities of Nickel(II) and Zinc(II) Complexes of Asymmetric [NN′O] Ligands as 26S Proteasome Inhibitors. Inorganic Chemistry, 2009, 48, 5928-5937.	4.0	58
51	Molecular Order in Langmuirâ^'Blodgett Monolayers of Metalâ^'Ligand Surfactants Probed by Sum Frequency Generation. Langmuir, 2009, 25, 6880-6886.	3.5	30
52	Interfacial Behavior and Film Patterning of Redoxâ€Active Cationic Copper(II)â€Containing Surfactants. Chemistry - A European Journal, 2008, 14, 9665-9674.	3.3	18
53	Influence of the Apical Ligand in the Thermotropic Mesomorphism of Cationic Copper-Based Surfactants. Inorganic Chemistry, 2008, 47, 7225-7232.	4.0	9
54	Synthesis, Redox, and Amphiphilic Properties of Responsive Salycilaldimine-Copper(II) Soft Materials. Inorganic Chemistry, 2008, 47, 3119-3127.	4.0	19

CLÃiudio N Verani

#	Article	IF	CITATIONS
55	The Therapeutic Potential of Gallium-Based Complexes in Anti-Tumor Drug Design. Letters in Drug Design and Discovery, 2007, 4, 311-317.	0.7	32
56	Archetypical Modeling and Amphiphilic Behavior of Cobalt(II)-Containing Soft-Materials with Asymmetric Tridentate Ligands. Inorganic Chemistry, 2007, 46, 9808-9818.	4.0	44
57	Generation and Characterization of [(P)Mâ^'(X)â^'Co(TMPA)]n+Assemblies; P = Porphyrinate, M = Fellland Colll, X = O2-, OH-, O22-, and TMPA = Tris(2-pyridylmethyl)amine. Inorganic Chemistry, 2007, 46, 3017-3026.	4.0	23
58	Amphiphilic and Magnetic Properties of a New Class of Clusterâ€Bearing [L ₂ Cu ₄ (1¼ ₄ â€O)(1¼ ₂ â€carboxylato) ₄] Soft Materials. Chemistry - A European Journal, 2007, 13, 9948-9956.	3.3	25
59	Inhibition of the Proteasome Activity by Gallium(III) Complexes Contributes to Their Anti–Prostate Tumor Effects. Cancer Research, 2007, 67, 9258-9265.	0.9	102
60	Design of Molecular Scaffolds Based on Unusual Geometries for Magnetic Modulation of Spin-Diverse Complexes with Selective Redox Response. Inorganic Chemistry, 2007, 46, 72-78.	4.0	28
61	Structural, spectroscopic, and electrochemical behavior of trans-phenolato cobalt(iii) complexes of asymmetric NNâ€2O ligands as archetypes for metallomesogens. Dalton Transactions, 2006, , 2517-2525.	3.3	55
62	Structural and Electronic Behavior of Unprecedented Five-Coordinate Iron(III) and Gallium(III) Complexes with a New Phenol-Rich Electroactive Ligand. Inorganic Chemistry, 2006, 45, 955-957.	4.0	55
63	Thermotropic Mesomorphism of Soft Materials Bearing Carboxylate-Supported μ4-Oxo Tetracupric Clusters. Inorganic Chemistry, 2006, 45, 7587-7589.	4.0	24
64	Synthesis, Structure, and Anticancer Activity of Gallium(III) Complexes with Asymmetric Tridentate Ligands:Â Growth Inhibition and Apoptosis Induction of Cisplatin-Resistant Neuroblastoma Cells. Inorganic Chemistry, 2006, 45, 6263-6268.	4.0	65
65	Influence of Ligand Rigidity and Ring Substitution on the Structural and Electronic Behavior of Trivalent Iron and Gallium Complexes with Asymmetric Tridentate Ligands. Inorganic Chemistry, 2005, 44, 7414-7422.	4.0	80
66	Synthesis and Spectroscopy of μ-Oxo (O2-)-Bridged Heme/Non-heme Diiron Complexes:  Models for the Active Site of Nitric Oxide Reductase. Inorganic Chemistry, 2004, 43, 651-662.	4.0	43
67	Copper(II) complexes with (2-hydroxybenzyl-2-pyridylmethyl)amine–Hbpa: syntheses, characterization and crystal structures of the ligand and [Cu(II)(Hbpa)2](ClO4)2·2H2O. Inorganica Chimica Acta, 1999, 290, 207-212.	2.4	38