Per Petersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091340/publications.pdf

Version: 2024-02-01

48 papers

1,181 citations

20 h-index 33 g-index

49 all docs

49 docs citations

49 times ranked 906 citing authors

#	Article	IF	CITATIONS
1	Development of laser-based techniques for <i>in situ</i> characterization of the first wall in ITER and future fusion devices. Nuclear Fusion, 2013, 53, 093002.	3.5	99
2	A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis. Review of Scientific Instruments, 2016, 87, 103303.	1.3	98
3	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	3.5	83
4	An overview of the comprehensive First Mirror Test in JET with ITER-like wall. Physica Scripta, 2014, T159, 014011.	2.5	59
5	Ion beam analysis of fusion plasma-facing materials and components: facilities and research challenges. Nuclear Fusion, 2020, 60, 025001.	3.5	54
6	Long-term fuel retention in JET ITER-like wall. Physica Scripta, 2016, T167, 014075.	2.5	52
7	Dust generation in tokamaks: Overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall. Fusion Engineering and Design, 2018, 136, 579-586.	1.9	52
8	Overview of fuel inventory in JET with the ITER-like wall. Nuclear Fusion, 2017, 57, 086045.	3.5	47
9	Overview of the JET ITER-like wall divertor. Nuclear Materials and Energy, 2017, 12, 499-505.	1.3	46
10	Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns. Nuclear Fusion, 2019, 59, 086009.	3.5	45
11	Deuterium inventory in Tore Supra: Coupled carbon–deuterium balance. Journal of Nuclear Materials, 2013, 438, S120-S125.	2.7	38
12	Nitrogen and neon retention in plasma-facing materials. Journal of Nuclear Materials, 2011, 415, S223-S226.	2.7	34
13	Co-deposited layers in the divertor region of JET-ILW. Journal of Nuclear Materials, 2015, 463, 814-817.	2.7	32
14	Plasma impact on diagnostic mirrors in JET. Nuclear Materials and Energy, 2017, 12, 506-512.	1.3	25
15	Fuel inventory and deposition in castellated structures in JET-ILW. Nuclear Fusion, 2017, 57, 066027.	3.5	25
16	First mirror test in JET for ITER: Complete overview after three ILW campaigns. Nuclear Materials and Energy, 2019, 19, 59-66.	1.3	24
17	Plasma cleaning of beryllium coated mirrors. Physica Scripta, 2016, T167, 014069.	2.5	24
18	Laser-assisted cleaning of beryllium-containing mirror samples from JET and PISCES-B. Fusion Engineering and Design, 2014, 89, 122-130.	1.9	23

#	Article	IF	Citations
19	Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak. Matter and Radiation at Extremes, 2017, 2, 87-104.	3.9	23
20	Fine metal dust particles on the wall probes from JET-ILW. Physica Scripta, 2017, T170, 014038.	2.5	22
21	Nuclear reaction and heavy ion ERD analysis of wall materials from controlled fusion devices: Deuterium and nitrogen-15 studies. Nuclear Instruments & Methods in Physics Research B, 2012, 273, 113-117.	1.4	20
22	Injection of nitrogen-15 tracer into ASDEX-Upgrade: New technique in material migration studies. Journal of Nuclear Materials, 2013, 438, S616-S619.	2.7	19
23	Comparison of erosion and deposition in JET divertor during the first three ITER-like wall campaigns. Physica Scripta, 2020, T171, 014059.	2.5	19
24	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18
25	Self-consistent application of ion cyclotron wall conditioning for co-deposited layer removal and recovery of tokamak operation on TEXTOR. Nuclear Fusion, 2013, 53, 123001.	3.5	15
26	Deuterium as a cleaning gas for ITER first mirrors: experimental study on beryllium deposits from laboratory and JET-ILW. Nuclear Fusion, 2019, 59, 096027.	3. 5	15
27	Evaluation of tritium retention in plasma facing components during JET tritium operations. Physica Scripta, 2021, 96, 124075.	2.5	14
28	Combined ion micro probe and SEM analysis of strongly non uniform deposits in fusion devices. Nuclear Instruments & Methods in Physics Research B, 2015, 342, 19-28.	1.4	13
29	The upgraded TOMAS device: A toroidal plasma facility for wall conditioning, plasma production, and plasma–surface interaction studies. Review of Scientific Instruments, 2021, 92, 023506.	1.3	13
30	First mirror erosion–deposition studies in JET using an ITER-like mirror test assembly. Nuclear Fusion, 2021, 61, 046022.	3.5	13
31	Overview of nitrogen-15 application as a tracer gas for material migration and retention studies in tokamaks. Physica Scripta, 2014, T159, 014042.	2.5	12
32	Metallic mirrors for plasma diagnosis in current and future reactors: tests for ITER and DEMO. Physica Scripta, 2017, T170, 014061.	2.5	12
33	Ion Microbeam Analyses of Dust Particles and Codeposits from JET with the ITER-Like Wall. Analytical Chemistry, 2018, 90, 5744-5752.	6.5	12
34	Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR. Physica Scripta, 2014, T159, 014017.	2.5	9
35	Review on global migration, fuel retention and modelling after TEXTOR decommission. Nuclear Materials and Energy, 2018, 17, 83-112.	1.3	9
36	An overview of nuclear micro-beam analysis of surface and bulk fuel retention in carbon-fibre composites from Tore Supra. Journal of Nuclear Materials, 2011, 415, S761-S764.	2.7	8

#	Article	IF	CITATIONS
37	Dust generation and accumulation in JET-ILW: morphology and stability of co-deposits on main plasma-facing components and wall probes. Physica Scripta, 0, , .	2.5	8
38	Characterization of neutral particle fluxes from ICWC and ECWC plasmas in the TOMAS facility. Physica Scripta, 2021, 96, 124025.	2.5	7
39	Fuel retention and erosion-deposition on inner wall cladding tiles in JET-ILW. Physica Scripta, 2021, 96, 124071.	2.5	7
40	Isotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET. Physica Scripta, 2022, 97, 044001.	2.5	7
41	Impurity re-distribution in the corner regions of the JET divertor. Physica Scripta, 2017, T170, 014060.	2.5	6
42	Microanalysis of deposited layers in the inner divertor of JET with ITER-like wall. Nuclear Materials and Energy, 2017, 12, 412-417.	1.3	5
43	Interaction of candidate plasma facing materials with tokamak plasma in COMPASS. Journal of Nuclear Materials, 2017, 493, 102-119.	2.7	5
44	Design of an ICRF system for plasma–wall interactions and RF plasma production studies on TOMAS. Fusion Engineering and Design, 2017, 123, 317-320.	1.9	4
45	Investigation of probe surfaces after ion cyclotron wall conditioning in ASDEX upgrade. Nuclear Materials and Energy, 2017, 12, 733-735.	1.3	3
46	Fuel inventory and impurity deposition in castellated tungsten tiles in KSTAR: experiment and modelling. Physica Scripta, 2020, T171, 014049.	2.5	2
47	3D deposition patterns of deuterium retention and impurities in the COMPASS divertor: a data-driven root cause analysis and prediction approach. Fusion Engineering and Design, 2022, 179, 113118.	1.9	1
48	Application of Ion Beam Analysis in Studies of First Wall Materials in Controlled Fusion Devices. Physics, 2022, 4, 37-50.	1.4	0