Andrew Wilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7091075/publications.pdf

Version: 2024-02-01

45 papers

3,627 citations

172457 29 h-index 265206 42 g-index

47 all docs

47 docs citations

47 times ranked

4110 citing authors

#	Article	IF	Citations
1	Inhibition of polar actin assembly by astral microtubules is required for cytokinesis. Nature Communications, 2021, 12, 2409.	12.8	18
2	A lipid primes the final cut in dividing cells. Science, 2021, 374, 1318-1319.	12.6	0
3	Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling. Molecular Biology of the Cell, 2020, 31, 1595-1610.	2.1	7
4	The scaffold-protein IQGAP1 enhances and spatially restricts the actin-nucleating activity of Diaphanous-related formin 1 (DIAPH1). Journal of Biological Chemistry, 2020, 295, 3134-3147.	3.4	11
5	CDK11p58–cyclin L1β regulates abscission site assembly. Journal of Biological Chemistry, 2019, 294, 18639-18649.	3.4	7
6	Cytokinesis requires localized \hat{l}^2 -actin filament production by an actin isoform specific nucleator. Nature Communications, 2017, 8, 1530.	12.8	62
7	Importin \hat{I}^2 2 Mediates the Spatio-temporal Regulation of Anillin through a Noncanonical Nuclear Localization Signal. Journal of Biological Chemistry, 2015, 290, 13500-13509.	3.4	18
8	Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biology, 2014, 4, 130190.	3.6	75
9	The BAR domain of amphiphysin is required for cleavage furrow tip–tubule formation during cellularization in Drosophila embryos. Molecular Biology of the Cell, 2013, 24, 1444-1453.	2.1	17
10	Glycolytic Metabolites Are Critical Modulators of Oocyte Maturation and Viability. PLoS ONE, 2013, 8, e77612.	2.5	8
11	A Bacterial Acetyltransferase Destroys Plant Microtubule Networks and Blocks Secretion. PLoS Pathogens, 2012, 8, e1002523.	4.7	178
12	Cleavage Furrow Organization Requires PIP2-Mediated Recruitment of Anillin. Current Biology, 2012, 22, 64-69.	3.9	104
13	Phosphoinositide Function in Cytokinesis. Current Biology, 2012, 22, 91.	3.9	1
14	The site of RanGTP generation can act as an organizational cue for mitotic microtubules. Biology of the Cell, 2011, 103, 421-434.	2.0	1
15	Phosphoinositide Function in Cytokinesis. Current Biology, 2011, 21, R930-R934.	3.9	41
16	Chlamydia trachomatis Inclusions Induce Asymmetric Cleavage Furrow Formation and Ingression Failure in Host Cells. Molecular and Cellular Biology, 2011, 31, 5011-5022.	2.3	17
17	The Fowler Syndrome-Associated Protein FLVCR2 Is an Importer of Heme. Molecular and Cellular Biology, 2010, 30, 5318-5324.	2.3	103
18	Poleward Transport of TPX2 in the Mammalian Mitotic Spindle Requires Dynein, Eg5, and Microtubule Flux. Molecular Biology of the Cell, 2010, 21, 979-988.	2.1	77

#	Article	IF	CITATIONS
19	Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. Journal of Cell Science, 2009, 122, 644-655.	2.0	39
20	Conservation of core gene expression in vertebrate tissues. Journal of Biology, 2009, 8, 33.	2.7	165
21	Ran out of the nucleus for apoptosis. Nature Cell Biology, 2009, 11, 11-12.	10.3	7
22	Anillin-mediated Targeting of Peanut to Pseudocleavage Furrows Is Regulated by the GTPase Ran. Molecular Biology of the Cell, 2008, 19, 3735-3744.	2.1	56
23	"HURP on―we're off to the kinetochore!. Journal of Cell Biology, 2006, 173, 829-831.	5.2	10
24	Ran Is Required before Metaphase for Spindle Assembly and Chromosome Alignment and after Metaphase for Chromosome Segregation and Spindle Midbody Organization. Molecular Biology of the Cell, 2006, 17, 2069-2080.	2.1	44
25	Proteomic Analysis of SRm160-containing Complexes Reveals a Conserved Association with Cohesin. Journal of Biological Chemistry, 2005, 280, 42227-42236.	3.4	28
26	The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9529-9534.	7.1	51
27	Structural Basis for the Activation of Microtubule Assembly by the EB1 and p150Glued Complex. Molecular Cell, 2005, 19, 449-460.	9.7	121
28	Bst-2/HM1.24 Is a Raft-Associated Apical Membrane Protein with an Unusual Topology. Traffic, 2003, 4, 694-709.	2.7	378
29	Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. Journal of Cell Science, 2003, 116, 4791-4798.	2.0	105
30	Ran Localizes around the Microtubule Spindle In Vivo during Mitosis in Drosophila Embryos. Current Biology, 2002, 12, 1124-1129.	3.9	47
31	Role of Importin-beta in Coupling Ran to Downstream Targets in Microtubule Assembly. Science, 2001, 291, 653-656.	12.6	315
32	Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nature Cell Biology, 2001, 3, 221-227.	10.3	237
33	The Role of Ran in Regulating Microtubule Spindle Assembly. , 2001, , 85-104.		0
34	Complete Reconstitution of Clathrin Basket Formation with Recombinant Protein Fragments: Adaptor Control of Clathrin Self-Assembly. Traffic, 2000, 1, 69-75.	2.7	44
35	NGF Signals through TrkA to Increase Clathrin at the Plasma Membrane and Enhance Clathrin-Mediated Membrane Trafficking. Journal of Neuroscience, 2000, 20, 7325-7333.	3.6	119
36	The Role of Xgrip210 in \hat{I}^3 -Tubulin Ring Complex Assembly and Centrosome Recruitment. Journal of Cell Biology, 2000, 151, 1525-1536.	5.2	53

Andrew Wilde

#	Article	IF	CITATION
37	Stimulation of Microtubule Aster Formation and Spindle Assembly by the Small GTPase Ran. Science, 1999, 284, 1359-1362.	12.6	369
38	EGF Receptor Signaling Stimulates SRC Kinase Phosphorylation of Clathrin, Influencing Clathrin Redistribution and EGF Uptake. Cell, 1999, 96, 677-687.	28.9	317
39	\hat{I}^3 -Tubulin complexes and their role in microtubule nucleation. Current Topics in Developmental Biology, 1999, 49, 55-73.	2.2	41
40	Clathrin assembly: phosphorylation and peptides provide new tools. Trends in Cell Biology, 1997, 7, 47.	7.9	0
41	In vivo phosphorylation of adaptors regulates their interaction with clathrin Journal of Cell Biology, 1996, 135, 635-645.	5.2	144
42	The tyrosine-containing internalization motif in the cytoplasmic domain of TGN38/41 lies within a nascent helix. Journal of Biological Chemistry, 1994, 269, 7131-6.	3 . 4	29
43	Identification, molecular characterization and immunolocalization of an isoform of the <i>trans</i> -Golgi-network (TGN)-specific integral membrane protein TGN38. Biochemical Journal, 1992, 283, 313-316.	3.7	42
44	Epitope mapping of two isoforms of a trans Golgi network specific integral membrane protein TGN38/41. FEBS Letters, 1992, 313, 235-238.	2.8	37
45	A simple single-step procedure for small-scale preparation of <i>Escherichia coli</i> plasmids. Nucleic Acids Research, 1990, 18, 1660-1660.	14.5	82