William E Kunin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7090996/publications.pdf Version: 2024-02-01

WILLIAM F KLININ

#	Article	IF	CITATIONS
1	How Should Beta-Diversity Inform Biodiversity Conservation?. Trends in Ecology and Evolution, 2016, 31, 67-80.	8.7	851
2	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	4.0	605
3	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	5.4	562
4	The identification of 100 ecological questions of high policy relevance in the UK. Journal of Applied Ecology, 2006, 43, 617-627.	4.0	395
5	Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142849.	2.6	393
6	The spatial structure of populations. Journal of Animal Ecology, 1999, 68, 647-657.	2.8	331
7	Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 2016, 530, 85-88.	27.8	320
8	Species richness declines and biotic homogenisation have slowed down for <scp>NW</scp> â€European pollinators and plants. Ecology Letters, 2013, 16, 870-878.	6.4	305
9	The biology of rarity: Patterns, causes and consequences. Trends in Ecology and Evolution, 1993, 8, 298-301.	8.7	300
10	A systems approach reveals urban pollinator hotspots and conservation opportunities. Nature Ecology and Evolution, 2019, 3, 363-373.	7.8	293
11	Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLoS ONE, 2016, 11, e0158117.	2.5	233
12	Scale Dependency of Rarity, Extinction Risk, and Conservation Priority. Conservation Biology, 2003, 17, 1559-1570.	4.7	232
13	Ploidy influences rarity and invasiveness in plants. Journal of Ecology, 2011, 99, 1108-1115.	4.0	211
14	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	4.0	199
15	Food production vs. biodiversity: comparing organic and conventional agriculture. Journal of Applied Ecology, 2013, 50, 355-364.	4.0	198
16	Measuring β <i>â€</i> diversity with species abundance data. Journal of Animal Ecology, 2015, 84, 1112-1122.	2.8	161
17	Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Functional Ecology, 2017, 31, 26-37.	3.6	141
18	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	1.5	135

WILLIAM E KUNIN

#	Article	IF	CITATIONS
19	The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150294.	2.6	120
20	A framework for assessing threats and benefits to species responding to climate change. Methods in Ecology and Evolution, 2011, 2, 125-142.	5.2	109
21	Patterns of beta diversity in Europe: the role of climate, land cover and distance across scales. Journal of Biogeography, 2012, 39, 1473-1486.	3.0	104
22	Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods in Ecology and Evolution, 2013, 4, 167-174.	5.2	97
23	Measuring βâ€diversity by remote sensing: A challenge for biodiversity monitoring. Methods in Ecology and Evolution, 2018, 9, 1787-1798.	5.2	97
24	Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods in Ecology and Evolution, 2019, 10, 2129-2140.	5.2	81
25	Scaling Down: On the Challenge of Estimating Abundance from Occurrence Patterns. American Naturalist, 2000, 156, 560-566.	2.1	69
26	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	1.5	64
27	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	3.0	61
28	Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. New Phytologist, 2013, 197, 989-1001.	7.3	57
29	Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales. Methods in Ecology and Evolution, 2015, 6, 324-332.	5.2	57
30	Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales – Research Needs and Approaches of the <i>SCALES</i> Project. Gaia, 2010, 19, 187-193.	0.7	54
31	Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1495-1506.	2.6	52
32	The effect of environmental stochasticity on species richness in neutral communities. Journal of Theoretical Biology, 2016, 409, 155-164.	1.7	46
33	Effects of urbanisation and management practices on pollinators in tropical Africa. Journal of Applied Ecology, 2019, 56, 214-224.	4.0	46
34	Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography, 2011, 38, 78-88.	3.0	42
35	Multicriterion tradeâ€offs and synergies for spatial conservation planning. Journal of Applied Ecology, 2017, 54, 903-913.	4.0	42
36	Downscaling species occupancy from coarse spatial scales. Ecological Applications, 2012, 22, 1004-1014.	3.8	41

3

WILLIAM E KUNIN

#	Article	IF	CITATIONS
37	Pollinator monitoring more than pays for itself. Journal of Applied Ecology, 2021, 58, 44-57.	4.0	41
38	Random Forest characterization of upland vegetation and management burning from aerial imagery. Journal of Biogeography, 2010, 37, 37-46.	3.0	40
39	Escape from parasitism by the invasive alien ladybird, <i>Harmonia axyridis</i> . Insect Conservation and Diversity, 2014, 7, 334-342.	3.0	38
40	Densityâ€dependence at multiple scales in experimental and natural plant populations. Journal of Ecology, 2009, 97, 567-580.	4.0	37
41	Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202201.	2.6	37
42	The effect of proximity to a honeybee apiary on bumblebee colony fitness, development, and performance. Apidologie, 2014, 45, 504-513.	2.0	36
43	Ecological correlates of range structure in rare and scarce British plants. Journal of Ecology, 2006, 94, 581-596.	4.0	35
44	Organic farming enhances parasitoid diversity at the local and landscape scales. Journal of Applied Ecology, 2015, 52, 1102-1109.	4.0	34
45	Life history variation in <i>Arabidopsis lyrata</i> across its range: effects of climate, population size and herbivory. Oikos, 2011, 120, 979-990.	2.7	28
46	Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos, 2017, 126, 1451-1458.	2.7	28
47	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	9.5	28
48	Sampling and modelling rare species: Conceptual guidelines for the neglected majority. Global Change Biology, 2022, 28, 3754-3777.	9.5	27
49	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	4.5	26
50	Density effects at multiple scales in an experimental plant population. Journal of Ecology, 2007, 95, 435-445.	4.0	25
51	A method for the objective selection of landscapeâ€scale study regions and sites at the national level. Methods in Ecology and Evolution, 2017, 8, 1468-1476.	5.2	23
52	Classifying grass-dominated habitats from remotely sensed data: The influence of spectral resolution, acquisition time and the vegetation classification system on accuracy and thematic resolution. Science of the Total Environment, 2020, 711, 134584.	8.0	22
53	Reliably predicting pollinator abundance: Challenges of calibrating processâ€based ecological models. Methods in Ecology and Evolution, 2020, 11, 1673-1689.	5.2	22
54	Can coarseâ€grain patterns in insect atlas data predict local occupancy?. Diversity and Distributions, 2014, 20, 895-907.	4.1	21

William E Kunin

#	Article	IF	CITATIONS
55	Accounting for biotic interactions through alphaâ€diversity constraints in stacked species distribution models. Methods in Ecology and Evolution, 2017, 8, 1092-1102.	5.2	21
56	Habitat Fragmentation Increases Overall Richness, but Not of Habitat-Dependent Species. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	20
57	Geographical variation in the response to nitrogen deposition in <i>Arabidopsis lyrata petraea</i> . New Phytologist, 2008, 179, 129-141.	7.3	18
58	Predicting ground temperatures across European landscapes. Methods in Ecology and Evolution, 2015, 6, 532-542.	5.2	17
59	Molecular taxonomic analysis of the plant associations of adult pollen beetles (Nitidulidae:) Tj ETQq1 1 0.78431 1101-1116.	4 rgBT /O 2.0	verlock 10 Tf 5 16
60	Matrix composition mediates effects of habitat fragmentation: a modelling study. Landscape Ecology, 2021, 36, 1631-1646.	4.2	11
61	Proximity to natural habitat and flower plantings increases insect populations and pollination services in South African apple orchards. Journal of Applied Ecology, 2021, 58, 2540-2551.	4.0	11
62	A weighting method to improve habitat association analysis: tested on British carabids. Ecography, 2019, 42, 1395-1404.	4.5	10
63	Field boundary features can stabilise bee populations and the pollination of massâ€flowering crops in rotational systems. Journal of Applied Ecology, 2021, 58, 2287-2304.	4.0	10
64	How to predict fine resolution occupancy from coarse occupancy data. Methods in Ecology and Evolution, 2018, 9, 2273-2284.	5.2	8
65	How to allow SAR collapse across local and continental scales: a resolution of the controversy between Storch et al. (2012) and Lazarina et al. (2013). Ecography, 2017, 40, 971-981.	4.5	6
66	Natural variation in tolerance to sub-zero temperatures among populations of Arabidopsis lyrata ssp. petraea. BMC Plant Biology, 2018, 18, 277.	3.6	5
67	Sparse Data Necessitate Explicit Treatment of Beta-Diversity: A Reply to Bush et al Trends in Ecology and Evolution, 2016, 31, 338-339.	8.7	4
68	Mind the gap: Can downscaling Area of Occupancy overcome sampling gaps when assessing IUCN Red List status?. Diversity and Distributions, 2019, 25, 1832-1845.	4.1	4
69	Corrigendum to Carvalheiro <i>etÂal</i> . (). Ecology Letters, 2013, 16, 1416-1417.	6.4	3
70	Landscape-scale drivers of pollinator communities may depend on land-use configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210172.	4.0	3
71	Field spectroscopy data from non-arable, grass-dominated objects in an intensively used agricultural landscape in East Anglia, UK. Data in Brief, 2020, 28, 104888.	1.0	1
72	Scaling mount SAR: Commentary on Matthews et al. (2021) <i>The Species–Area Relationship: Theory and Application</i> . Journal of Biogeography, 2022, 49, 233-235.	3.0	0

#	Article	IF	CITATIONS
73	The development of an unsupervised hierarchical clustering analysis of dualâ€polarization weather surveillance radar observations to assess nocturnal insect abundance and diversity. Remote Sensing in Ecology and Conservation, 2022, 8, 698-716.	4.3	0