Timothy J Wallington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7090229/publications.pdf

Version: 2024-02-01

343 papers 20,300 citations

73 h-index

9786

122 g-index

365 all docs 365 docs citations

365 times ranked

12773 citing authors

#	Article	IF	CITATIONS
1	Degradation of Fluorotelomer Alcohols:Â A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environmental Science & Environmental Science	10.0	818
2	Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environmental Science &	10.0	738
3	Global Lithium Availability. Journal of Industrial Ecology, 2011, 15, 760-775.	5.5	435
4	On-road vehicle emissions and their control in China: A review and outlook. Science of the Total Environment, 2017, 574, 332-349.	8.0	424
5	UV absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chemical Reviews, 1992, 92, 667-710.	47.7	416
6	Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Reviews of Geophysics, 2013, 51, 300-378.	23.0	390
7	Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chemical Reviews, 2015, 115, 3984-4014.	47.7	374
8	Atmospheric chemistry of small organic peroxy radicals. Journal of Geophysical Research, 2001, 106, 12157-12182.	3.3	326
9	The Atmospheric Chemistry of Alkoxy Radicals. Chemical Reviews, 2003, 103, 4657-4690.	47.7	320
10	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 2010, 10, 9059-9223.	4.9	312
11	Radiative forcing of climate by hydrochlorofluorocarbons and hydrofluorocarbons. Journal of Geophysical Research, 1995, 100, 23227.	3.3	308
12	Atmospheric Chemistry of Perfluoroalkanesulfonamides:Â Kinetic and Product Studies of the OH Radical and Cl Atom Initiated Oxidation of N-Ethyl Perfluorobutanesulfonamide. Environmental Science & En	10.0	291
13	Atmospheric Chemistry of N-methyl Perfluorobutane Sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and Mechanism of Reaction with OH. Environmental Science & Technology, 2006, 40, 1862-1868.	10.0	283
14	Formation of C7F15COOH (PFOA) and Other Perfluorocarboxylic Acids during the Atmospheric Oxidation of 8:2 Fluorotelomer Alcohol. Environmental Science & Environmental Science & 2006, 40, 924-930.	10.0	258
15	Atmospheric chemistry of CF3CF CH2: Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O3. Chemical Physics Letters, 2007, 439, 18-22.	2.6	223
16	Atmospheric Lifetime of Fluorotelomer Alcohols. Environmental Science & Emp; Technology, 2003, 37, 3816-3820.	10.0	221
17	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species. Atmospheric Chemistry and Physics, 2008, 8, 4141-4496.	4.9	221
18	Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environmental Science & Empty Technology, 2016, 50, 7715-7722.	10.0	210

#	Article	IF	CITATIONS
19	High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States. Fuel, 2012, 97, 585-594.	6.4	197
20	Global carbon intensity of crude oil production. Science, 2018, 361, 851-853.	12.6	196
21	Life-Cycle Energy and Greenhouse Gas Emission Benefits of Lightweighting in Automobiles: Review and Harmonization. Environmental Science & Environment	10.0	177
22	Fourier transform infrared kinetic studies of the reaction of HONO with HNO3, NO3 and N2O5 at 295 K. Journal of Atmospheric Chemistry, 1989, 9, 399-409.	3.2	172
23	Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution fromÂcoal and biomass combustion. Atmospheric Chemistry and Physics, 2017, 17, 4751-4768.	4.9	172
24	Octane Numbers of Ethanolâ^' and Methanolâ^'Gasoline Blends Estimated from Molar Concentrations. Energy & Energ	5.1	169
25	The Stratospheric Fate of CF3OH. Environmental Science & Eamp; Technology, 1994, 28, 1198-1200.	10.0	168
26	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates. Atmospheric Chemistry and Physics, 2013, 13, 8045-8228.	4.9	167
27	Vapor Pressures of Alcoholâ^'Gasoline Blends. Energy & En	5.1	157
28	Mechanisms of Atmospheric Oxidation of the Oxygenates. , 2011, , .		156
29	Assessing the Impact on Global Climate from General Anesthetic Gases. Anesthesia and Analgesia, 2012, 114, 1081-1085.	2.2	153
30	Source contributions of urban PM2.5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology. Atmospheric Environment, 2015, 123, 229-239.	4.1	152
31	Inhalation anaesthetics and climate change. British Journal of Anaesthesia, 2010, 105, 760-766.	3.4	142
32	Role of Excited CF3CFHO Radicals in the Atmospheric Chemistry of HFC-134a. The Journal of Physical Chemistry, 1996, 100, 18116-18122.	2.9	141
33	Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects. Environmental Science & Environm	10.0	141
34	Impact of biofuel production and other supply and demand factors on food price increases in 2008. Biomass and Bioenergy, 2011, 35, 1623-1632.	5.7	139
35	Automotive fuels and internal combustion engines: a chemical perspective. Chemical Society Reviews, 2006, 35, 335.	38.1	135
36	Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Physical Chemistry Chemical Physics, 2007, 9, 3149.	2.8	132

#	Article	IF	Citations
37	Organic Aerosol Formation during the Atmospheric Degradation of Toluene. Environmental Science & Envir	10.0	128
38	Gas phase reaction of Cl atoms with a series of oxygenated organic species at 295 K. International Journal of Chemical Kinetics, 1988, 20, 867-875.	1.6	125
39	CO2Emission Benefit of Diesel (versus Gasoline) Powered Vehicles. Environmental Science & Emp; Technology, 2004, 38, 3217-3223.	10.0	125
40	Atmospheric Chemistry of HFE-7100 (C4F9OCH3): Reaction with OH Radicals, UV Spectra and Kinetic Data for C4F9OCH2· and C4F9OCH2O· Radicals, and the Atmospheric Fate of C4F9OCH2O· Radicals. Journal of Physical Chemistry A, 1997, 101, 8264-8274.	2.5	120
41	Kinetics and mechanisms of the reactions of chlorine atoms with ethane, propane, andn-butane. International Journal of Chemical Kinetics, 1997, 29, 43-55.	1.6	116
42	Role of flying cars in sustainable mobility. Nature Communications, 2019, 10, 1555.	12.8	116
43	A kinetic study of the reaction of chlorine atoms with CF3CHCl2, CF3CH2F, CFCl2CH3, CF2ClCH3, CHF2CH3, CH3D, CH2D2, CHD3, CD4, and CD3Cl at 295±2 K. Chemical Physics Letters, 1992, 189, 437-442.	2.6	115
44	Photochemical ozone creation potentials for volatile organic compounds: Rationalization and estimation. Atmospheric Environment, 2017, 163, 128-137.	4.1	115
45	An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions. SAE International Journal of Engines, 0, 6, 470-487.	0.4	114
46	Atmospheric chemistry of hydrofluorocarbon 134a: fate of the alkoxy radical 1,2,2,2-tetrafluoroethoxy. Environmental Science &	10.0	112
47	Atmospheric Chemistry of the Phenoxy Radical, C6H5O(•):  UV Spectrum and Kinetics of Its Reaction with NO, NO2, and O2. Journal of Physical Chemistry A, 1998, 102, 7964-7974.	2.5	110
48	Distillation Curves for Alcoholâ-'Gasoline Blends. Energy & Energy & 2010, 24, 2683-2691.	5.1	108
49	The gas phase reactions of hydroxyl radicals with a series of esters over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1988, 20, 177-186.	1.6	105
50	Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa, 2019, 7, .	3.2	103
51	The gas phase reactions of hydroxyl radicals with a series of aliphatic ethers over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1988, 20, 41-49.	1.6	97
52	Kinetics of the Reactions of Chlorine Atoms with C2H4(k1) and C2H2(k2): A Determination of Î"Hf,298° for C2H3. The Journal of Physical Chemistry, 1996, 100, 4111-4119.	2.9	95
53	Atmospheric Chemistry of n-C3F7OCH3:  Reaction with OH Radicals and Cl Atoms and Atmospheric Fate of n-C3F7OCH2O(•) Radicals. Environmental Science & Environmental Scien	10.0	95
54	The gas phase reactions of hydroxyl radicals with a series of aliphatic alcohols over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1987, 19, 1015-1023.	1.6	90

#	Article	IF	CITATIONS
55	Atmospheric Chemistry of Perfluorinated Carboxylic Acids:  Reaction with OH Radicals and Atmospheric Lifetimes. Journal of Physical Chemistry A, 2004, 108, 615-620.	2.5	90
56	Atmospheric Chemistry of Isoflurane, Desflurane, and Sevoflurane: Kinetics and Mechanisms of Reactions with Chlorine Atoms and OH Radicals and Global Warming Potentials. Journal of Physical Chemistry A, 2012, 116, 5806-5820.	2.5	89
57	Infrared absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between experiment and theory. Journal of Geophysical Research, 2010, 115, .	3.3	88
58	Atmospheric chemistry of trans-CF3CHCHF: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3. Chemical Physics Letters, 2007, 443, 199-204.	2.6	87
59	The environmental impact of CFC replacements - HFCs and HCFCs. Environmental Science & Emp; Technology, 1994, 28, 320A-326A.	10.0	85
60	Atmospheric chemistry of short-chain haloolefins: Photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs). Chemosphere, 2015, 129, 135-141.	8.2	85
61	Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: how low should we go?. Npj Climate and Atmospheric Science, 2018, 1 , .	6.8	85
62	Rate constants for the gas phase reactions of OH with C5 through C7 aliphatic alcohols and ethers: Predicted and experimental values. International Journal of Chemical Kinetics, 1988, 20, 541-547.	1.6	84
63	Fourier transform infrared study of the self reaction of C2H5O2 radicals in air at 295 K. International Journal of Chemical Kinetics, 1989, 21, 1077-1089.	1.6	84
64	Fourier transform infrared studies of the reaction of Cl atoms with PAN, PPN, CH3OOH, HCOOH, CH3COCH3 and CH3COC2H5 at 295�2 K. Journal of Atmospheric Chemistry, 1990, 10, 301-313.	3.2	84
65	Pressure dependence of the reaction of chlorine atoms with ethene and acetylene in air at 295 K. The Journal of Physical Chemistry, 1990, 94, 3644-3648.	2.9	84
66	A kinetic study of the reaction of chlorine and fluorine atoms with HC(O)F at 295 i 2 $\frac{1}{2}$ 2 K. International Journal of Chemical Kinetics, 1997, 29, 619-625.	1.6	84
67	Atmospheric Oxidation Mechanism of Methyl Acetate. Journal of Physical Chemistry A, 2000, 104, 345-351.	2.5	83
68	China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environmental Science & Environmental Scie	10.0	83
69	Atmospheric chemistry of hydrofluorocarbon 134a. Fate of the alkoxy radical trifluoromethoxy. Environmental Science & Environm	10.0	82
70	Kinetics and Mechanisms of the Self-Reactions of CCl3O2and CHCl2O2Radicals and Their Reactions with HO2. The Journal of Physical Chemistry, 1996, 100, 14356-14371.	2.9	81
71	Fine-grained vehicle emission management using intelligent transportation system data. Environmental Pollution, 2018, 241, 1027-1037.	7.5	81
72	Atmospheric Degradation Mechanism of CF3OCH3. Journal of Physical Chemistry A, 1999, 103, 4202-4208.	2.5	80

#	Article	IF	CITATIONS
73	Nitrous Oxide (N2O) Emissions from Vehicles. Environmental Science & Environme	10.0	79
74	The Mechanisms of Reactions Influencing Atmospheric Ozone. , 2015, , .		78
75	Atmospheric Chemistry of Fluorinated Alcohols:Â Reaction with Cl Atoms and OH Radicals and Atmospheric Lifetimes. Journal of Physical Chemistry A, 2004, 108, 1973-1979.	2.5	77
76	Atmospheric Chemistry of Sulfuryl Fluoride: Reaction with OH Radicals, Cl Atoms and O ₃ , Atmospheric Lifetime, IR Spectrum, and Global Warming Potential. Environmental Science & Eamp; Technology, 2009, 43, 1067-1070.	10.0	76
77	FTIR product study of the reaction of CH3OCH2O2+HO2. Chemical Physics Letters, 1993, 211, 41-47.	2.6	74
78	Pressure Dependence of the Reaction Cl + C3H6. The Journal of Physical Chemistry, 1996, 100, 9788-9793.	2.9	72
79	Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO ₂ Targets: Connections between Transportation and Other Energy Sectors. Environmental Science & Environmental Science & Technology, 2009, 43, 3365-3371.	10.0	72
80	Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Environmental Science & Emp; Technology, 2018, 52, 2392-2399.	10.0	72
81	Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles. Environmental Science & Environmental Science & 2016, 50, 11226-11233.	10.0	70
82	Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustainable Energy and Fuels, 2017, 1, 258-266.	4.9	70
83	Atmospheric Chemistry of CF3CF=CF2:Â Kinetics and Mechanism of Its Reactions with OH Radicals, Cl Atoms, and Ozone. Journal of Physical Chemistry A, 2000, 104, 7255-7260.	2.5	68
84	A kinetic study of the reaction of fluorine atoms with CH3F, CH3Cl, CH3Br, CF2H2, CO, CF3H, CF3CHCl2, CF3CH2F, CHF2CHF2, CF2ClCH3, CHF2CH3, and CF3CF2H at 295 $\hat{A}\pm$ 2 K. International Journal of Chemical Kinetics, 1993, 25, 651-665.	1.6	66
85	Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons. Journal of Geophysical Research, 2001, 106, 20493-20505.	3.3	65
86	Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals towards saturated organic compounds. The Journal of Physical Chemistry, 1988, 92, 5024-5028.	2.9	63
87	Kinetics of the gas phase reaction of hydroxyl radicals with ethane, benzene, and a series of halogenated benzenes over the temperature range 234-438 K. International Journal of Chemical Kinetics, 1987, 19, 725-739.	1.6	62
88	UV absorption spectra, kinetics, and mechanisms of the self reaction of CF3O2 radicals in the gas phase at 295 K. International Journal of Chemical Kinetics, 1992, 24, 1009-1021.	1.6	62
89	Radiative forcing of climate change by CFC-11 and possible CFC replacements. Journal of Geophysical Research, 1997, 102, 19597-19609.	3.3	62
90	Individual trip chain distributions for passenger cars: Implications for market acceptance of battery electric vehicles and energy consumption by plug-in hybrid electric vehicles. Applied Energy, 2016, 180, 650-660.	10.1	62

#	Article	IF	CITATIONS
91	Methane Emissions from Vehicles. Environmental Science & Emp; Technology, 2004, 38, 2005-2010.	10.0	61
92	Kinetics and Mechanism of the Acetylperoxy + HO2 Reaction. Journal of Physical Chemistry A, 1999, 103, 365-378.	2.5	60
93	Atmospheric Chemistry of the Z and E Isomers of CF3CFCHF; Kinetics, Mechanisms, and Products of Gas-Phase Reactions with Cl Atoms, OH Radicals, and O3. Journal of Physical Chemistry A, 2007, 111, 9789-9795.	2.5	60
94	Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and Other Weak Atmospheric Absorbers. Reviews of Geophysics, 2020, 58, e2019RG000691.	23.0	60
95	Bond Strength Trends in Halogenated Methanols: Evidence for Negative Hyperconjugation?. Journal of the American Chemical Society, 1995, 117, 478-485.	13.7	59
96	Hydrofluorocarbons and stratospheric ozone. Faraday Discussions, 1995, 100, 55.	3.2	59
97	Atmospheric Chemistry of CF3OCF2CF2H and CF3OC(CF3)2H:  Reaction with Cl Atoms and OH Radicals, Degradation Mechanism, Global Warming Potentials, and Empirical Relationship between k(OH) and k(Cl) for Organic Compounds. Journal of Physical Chemistry A, 2005, 109, 3926-3934.	2.5	59
98	Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing. Applied Energy, 2019, 250, 147-160.	10.1	59
99	Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030. Renewable and Sustainable Energy Reviews, 2021, 137, 110477.	16.4	59
100	Kinetics and Mechanism of the Gas-Phase Reaction of Cl Atoms with Benzene. Journal of Physical Chemistry A, 1998, 102, 10671-10681.	2.5	58
101	Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption. Environmental Science & Eamp; Technology, 2015, 49, 10209-10216.	10.0	58
102	Kinetic and mechanistic studies of the reactions of cyclopentylperoxy and cyclohexylperoxy radicals with hydroperoxy radical. The Journal of Physical Chemistry, 1992, 96, 4889-4894.	2.9	57
103	UV absorption spectrum, and kinetics and mechanism of the self reaction of CF3CF2O2 radicals in the gas phase at 295 K. International Journal of Chemical Kinetics, 1993, 25, 701-717.	1.6	57
104	Atmospheric Chemistry of 4:2 Fluorotelomer Alcohol (CF3(CF2)3CH2CH2OH):  Products and Mechanism of Cl Atom Initiated Oxidation. Journal of Physical Chemistry A, 2004, 108, 5635-5642.	2.5	55
105	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates. Atmospheric Chemistry and Physics, 2020, 20, 13497-13519.	4.9	55
106	Cavity Ring-down Study of the Visible Absorption Spectrum of the Phenyl Radical and Kinetics of Its Reactions with Cl, Br, Cl2, and O2. Journal of Physical Chemistry A, 2002, 106, 5908-5917.	2.5	54
107	Atmospheric chemistry of CF3CFCH2: Products and mechanisms of Cl atom and OH radical initiated oxidation. Chemical Physics Letters, 2008, 450, 263-267.	2.6	54
108	Atmospheric Chemistry of Cyclohexane:  UV Spectra of c-C6H11• and (c-C6H11)O2• Radicals, Kinetics of the Reactions of (c-C6H11)O2• Radicals with NO and NO2, and the Fate of the Alkoxy Radical (c-C6H11)O•. Journal of Physical Chemistry A, 1999, 103, 2688-2695.		53

#	Article	IF	CITATIONS
109	Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model of Mass-Induced Fuel Consumption. Environmental Science & Environmental Science	10.0	53
110	Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains. Environmental Science & Environmental Science & 2017, 51, 8215-8228.	10.0	53
111	Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles. Environmental Science & Environmental Science &	10.0	53
112	The Environmental Impact of CFC Replacements HFCs and HCFCs. Environmental Science & Emp; Technology, 1994, 28, 320A-326A.	10.0	52
113	Kinetics of the reaction of OH radicals with acetylene in 25-8000 torr of air at 296 K. International Journal of Chemical Kinetics, 2003, 35, 191-197.	1.6	52
114	Ethanol and Air Quality: Influence of Fuel Ethanol Content on Emissions and Fuel Economy of Flexible Fuel Vehicles. Environmental Science & Environmen	10.0	52
115	Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles. Environmental Science & Environmental Science & 2014, 48, 7069-7075.	10.0	52
116	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	3.2	52
117	Atmospheric Chemistry of HFE-7200 (C4F9OC2H5): Reaction with OH Radicals and Fate of C4F9OCH2CH2O(•) and C4F9OCHO(•)CH3Radicals. Journal of Physical Chemistry A, 1998, 102, 4839-4845	.2.5	51
118	Reaction of CH3O2+HO2 in air at 295 K: A product study. Chemical Physics Letters, 1990, 167, 513-518.	2.6	50
119	Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet. Meteorologische Zeitschrift, 2008, 17, 109-116.	1.0	50
120	Database for the kinetics of the gas-phase atmospheric reactions of organic compounds. Earth System Science Data, 2020, 12, 1203-1216.	9.9	50
121	Atmospheric Chemistry of Perfluoroaldehydes (CxF2x+1CHO) and Fluorotelomer Aldehydes (CxF2x+1CH2CHO):  Quantification of the Important Role of Photolysis. Journal of Physical Chemistry A, 2006, 110, 11944-11953.	2.5	49
122	The gas phase reactions of hydroxyl radicals with a series of carboxylic acids over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1988, 20, 331-338.	1.6	48
123	Atmospheric chemistry of trifluoromethoxy radicals: reaction with water. The Journal of Physical Chemistry, 1993, 97, 7606-7611.	2.9	48
124	Atmospheric chemistry of CH3Cl: mechanistic study of the reaction of CH2ClO2 radicals with HO2. Chemical Physics Letters, 1996, 251, 164-173.	2.6	48
125	Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2018, 18, 9297-9328.	4.9	48
126	A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050. Environmental Science & Emissions from 2016 to 2050. Environmental Science & Emissions from 2016, 53, 2199-2208.	10.0	48

#	Article	IF	CITATIONS
127	Atmospheric Chemistry of CF3CH2CH2OH:  Kinetics, Mechanisms and Products of Cl Atom and OH Radical Initiated Oxidation in the Presence and Absence of NOX. Journal of Physical Chemistry A, 2005, 109, 9816-9826.	2.5	47
128	Diesel vehicles and sustainable mobility in the U.S Energy Policy, 2013, 54, 47-53.	8.8	47
129	Mechanistic study of the gas-phase reaction of CH2FO2 radicals with HO2. Chemical Physics Letters, 1994, 218, 34-42.	2.6	46
130	Stability and infrared spectra of mono-, di-, and trichloromethanol. Chemical Physics Letters, 2000, 322, 97-102.	2.6	46
131	Atmospheric Chemistry ofn-CxF2x+1CHO (x= 1, 3, 4):Â Reaction with Cl Atoms, OH Radicals and IR Spectra of CxF2x+1C(O)O2NO2. Journal of Physical Chemistry A, 2004, 108, 5189-5196.	2.5	46
132	Absolute UV cross sections of methyl and ethyl peroxy radicals. The Journal of Physical Chemistry, 1992, 96, 986-992.	2.9	45
133	Atmospheric chemistry of CxF2x+1CHCH2 (x=1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 124-128.	3.9	45
134	Investigation of the Radical Product Channel of the CH ₃ OCH ₂ O ₂ + HO ₂ Reaction in the Gas Phase. Journal of Physical Chemistry A, 2010, 114, 408-416.	2.5	45
135	Perspective on Mechanism Development and Structureâ€Activity Relationships for Gasâ€Phase Atmospheric Chemistry. International Journal of Chemical Kinetics, 2018, 50, 435-469.	1.6	45
136	Energetics and Mechanism of Decomposition of CF3OH. The Journal of Physical Chemistry, 1996, 100, 6097-6103.	2.9	44
137	Atmospheric Oxidation Mechanism of Methyl Formate. Journal of Physical Chemistry A, 2001, 105, 5146-5154.	2.5	44
138	Atmospheric Chemistry of 4:2 Fluorotelomer Acrylate [C ₄ F ₉ CH ₂ OC(O)CHâ•CH ₂]: Kinetics, Mechanisms, and Products of Chlorine-Atom- and OH-Radical-Initiated Oxidation. Journal of Physical Chemistry A, 2009, 113, 3155-3161.	2.5	44
139	Estimated photochemical ozone creation potentials (POCPs) of CF3CFCH2 (HFO-1234yf) and related hydrofluoroolefins (HFOs). Atmospheric Environment, 2010, 44, 1478-1481.	4.1	44
140	FTIR Product Study of the Cl-Initiated Oxidation of CH3Cl: Evidence for HCl Elimination from the Chloromethoxy Radical. The Journal of Physical Chemistry, 1994, 98, 5679-5685.	2.9	43
141	Atmospheric chemistry of trans-CF3CHCHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 92-97.	3.9	43
142	Kinetics of the Reactions of Cl(2P1/2) and Cl(2P3/2) Atoms with C2H6, C2D6, CH3F, C2H5F, and CH3CF3at 298 K. Journal of Physical Chemistry A, 2001, 105, 5131-5136.	2.5	41
143	Atmospheric Chemistry of C2F5C(O)CF(CF3)2:  Photolysis and Reaction with Cl Atoms, OH Radicals, and Ozone. Journal of Physical Chemistry A, 2003, 107, 2674-2679.	2.5	41
144	Infrared absorption cross-sections in HITRAN2016 and beyond: Expansion for climate, environment, and atmospheric applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 230, 172-221.	2.3	41

#	Article	IF	CITATIONS
145	Atmospheric chemistry of C2F5CHO: reaction with Cl atoms and OH radicals, IR spectrum of C2F5C(O)O2NO2. Chemical Physics Letters, 2003, 379, 28-36.	2.6	40
146	Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	40
147	Atmospheric Chemistry of CF3CH2OCH2CF3: UV Spectra and Kinetic Data for CF3CH(•)OCH2CF3and CF3CH(OO•)OCH2CF3Radicals and Atmospheric Fate of CF3CH(O•)OCH2CF3Radicals. Journal of Physical Chemistry A, 1998, 102, 1152-1161.	2.5	38
148	Atmospheric Degradation of Perfluoro-2-methyl-3-pentanone: Photolysis, Hydrolysis and Hydration. Environmental Science & Envir	10.0	38
149	Corn Ethanol Production, Food Exports, and Indirect Land Use Change. Environmental Science & Emp; Technology, 2012, 46, 6379-6384.	10.0	38
150	N2O emissions from global transportation. Atmospheric Environment, 2014, 94, 258-263.	4.1	38
151	Economic and Climate Benefits of Electric Vehicles in China, the United States, and Germany. Environmental Science & Environme	10.0	38
152	Atmospheric chemistry of C2F5CHO: mechanism of the C2F5C(O)O2+ HO2 reaction. Chemical Physics Letters, 2003, 381, 14-21.	2.6	37
153	Atmospheric Chemistry ofn-CxF2x+1CHO (x= 1, 2, 3, 4):Â Fate ofn-CxF2x+1C(O) Radicals. Journal of Physical Chemistry A, 2006, 110, 12443-12447.	2.5	37
154	Henry's law constants (IUPAC Recommendations 2021). Pure and Applied Chemistry, 2022, 94, 71-85.	1.9	37
155	Atmospheric Chemistry of $1,1,1$ -Trichloroethane: UV Spectra and Self-Reaction Kinetics of CCl3CH2 and CCl3CH2O2 Radicals, Kinetics of the Reactions of the CCl3CH2O2 Radical with NO and NO2, and the Fate of the Alkoxy Radical CCl3CH2O. The Journal of Physical Chemistry, 1995, 99, 6570-6579.	2.9	36
156	Atmospheric Chemistry of 4:2 Fluorotelomer Alcohol (n-C4F9CH2CH2OH):  Products and Mechanism of Cl Atom Initiated Oxidation in the Presence of NOx. Journal of Physical Chemistry A, 2005, 109, 1849-1856.	2.5	36
157	Outlook for ammonia as a sustainable transportation fuel. Sustainable Energy and Fuels, 2021, 5, 4830-4841.	4.9	36
158	Atmospheric chemistry of CF3C(O)O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C(O)O2NO2. Chemical Physics Letters, 1994, 226, 563-569.	2.6	35
159	Atmospheric Chemistry of CH3O(CF2CF2O)nCH3(n= 1â°'3):Â Kinetics and Mechanism of Oxidation Initiated by Cl Atoms and OH Radicals, IR Spectra, and Global Warming Potentials. Journal of Physical Chemistry A, 2004, 108, 1964-1972.	2.5	35
160	Atmospheric Chemistry of CF3CHCH2 and C4F9CHCH2:  Products of the Gas-Phase Reactions with Cl Atoms and OH Radicals. Journal of Physical Chemistry A, 2007, 111, 909-915.	2.5	35
161	Atmospheric chemistry of cis-CF3CHCHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation. Chemical Physics Letters, 2009, 473, 233-237.	2.6	35
162	Atmospheric Chemistry of Two Biodiesel Model Compounds: Methyl Propionate and Ethyl Acetate. Journal of Physical Chemistry A, 2011, 115, 8906-8919.	2.5	35

#	Article	IF	Citations
163	Atmospheric Lifetime and Global Warming Potential of a Perfluoropolyether. Environmental Science & Env	10.0	34
164	Review of electrofuel feasibilityâ€"cost and environmental impact. Progress in Energy, 2022, 4, 032010.	10.9	34
165	A relative rate study of the reaction of chlorine atoms with a series of chloroalkanes at 295 K. The Journal of Physical Chemistry, 1989, 93, 3649-3651.	2.9	33
166	Kinetics of the reaction of F atoms with O2 and UV spectrum of FO2 radicals in the gas phase at 295 K. Chemical Physics Letters, 1994, 218, 287-294.	2.6	33
167	Atmospheric deuterium fractionation: HCHO and HCDO yields in the CH ₂ reaction. Atmospheric Chemistry and Physics, 2007, 7, 5873-5881.	4.9	33
168	Kinetic study of the reaction of chlorine atoms with CF3I and the reactions of CF3 radicals with O2, Cl2 and NO at 296 K. International Journal of Chemical Kinetics, 1995, 27, 205-218.	1.6	32
169	CH3CO Reactions with Cl2 and O2: More Evidence for HCl Elimination from the CH3CHClO Radical. The Journal of Physical Chemistry, 1995, 99, 8669-8672.	2.9	32
170	Trifluoroacetic acid in ancient freshwater. Atmospheric Environment, 2001, 35, 2799-2801.	4.1	32
171	Infrared spectrum and global warming potential of SF5CF3. Atmospheric Environment, 2002, 36, 1237-1240.	4.1	32
172	Atmospheric Chemistry of 4:2 Fluorotelomer lodide (<i>n</i> -C ₄ F ₉ CH ₂ CH ₂): Kinetics and Products of Photolysis and Reaction with OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2008, 112, 13542-13548.	2.5	32
173	Atmospheric Chemistry of <i>n</i> -Butanol: Kinetics, Mechanisms, and Products of Cl Atom and OH Radical Initiated Oxidation in the Presence and Absence of NO _{<i>x</i>} Journal of Physical Chemistry A, 2009, 113, 7011-7020.	2.5	32
174	Atmospheric Degradation of CF3OCFCF2:  Kinetics and Mechanism of Its Reaction with OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2000, 104, 2925-2930.	2.5	31
175	Atmospheric Chemistry of CF3CH2OCHF2 and CF3CHClOCHF2:  Kinetics and Mechanisms of Reaction with Cl Atoms and OH Radicals and Atmospheric Fate of CF3C(O•)HOCHF2 and CF3C(O•)ClOCHF2 Radicals. Journal of Physical Chemistry A, 2002, 106, 8391-8398.	2.5	31
176	UV absorption spectra, kinetics and mechanisms of the self-reaction of CHF2O2 radicals in the gas phase at 298 K. Chemical Physics Letters, 1992, 192, 82-88.	2.6	30
177	UV absorption spectra of HO2, CH3O2, C2H5O2, and CH3C(O)CH2O2 radicals and mechanism of the reactions of F and Cl atoms with CH3C(O)CH3. International Journal of Chemical Kinetics, 2002, 34, 283-291.	1.6	30
178	Atmospheric Chemistry of Propionaldehyde:  Kinetics and Mechanisms of Reactions with OH Radicals and Cl Atoms, UV Spectrum, and Self-Reaction Kinetics of CH3CH2C(O)O2 Radicals at 298 K. Journal of Physical Chemistry A, 2005, 109, 11837-11850.	2.5	30
179	Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms ( ≥  C _{4<td>m4p9gt;).</td><td>30</td>}	m4p9gt;).	30
180	Products of the Chlorine-Atom- and Hydroxyl-Radical-Initiated Oxidation of CH3CN. Journal of Physical Chemistry A, 2001, 105, 5380-5384.	2.5	29

#	Article	IF	CITATIONS
181	Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4):  Mechanism of the CxF2x+1C(O)O2 + HO2 Reaction. Journal of Physical Chemistry A, 2004, 108, 6325-6330.	2.5	29
182	Resolution of the uncertainties in the radiative forcing of HFC-134a. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93, 447-460.	2.3	29
183	Atmospheric Chemistry of Perfluorinated Aldehyde Hydrates (n-CxF2x+1CH(OH)2,x= 1, 3, 4):Â Hydration, Dehydration, and Kinetics and Mechanism of Cl Atom and OH Radical Initiated Oxidation. Journal of Physical Chemistry A, 2006, 110, 9854-9860.	2.5	29
184	Atmospheric Chemistry of CF3O Radicals: Reaction with CH4, CD4, CH3F, CF3H, 13CO, C2H5F, C2D6, C2H6, CH3OH, i-C4H8, and C2H2. The Journal of Physical Chemistry, 1995, 99, 3201-3205.	2.9	28
185	Atmospheric Chemistry of CF3CFHCF2OCF3and CF3CFHCF2OCF2H:Â Reaction with Cl Atoms and OH Radicals, Degradation Mechanism, and Global Warming Potentials. Journal of Physical Chemistry A, 2004, 108, 11333-11338.	2.5	28
186	Kinetics of the gas phase reactions of chlorine atoms with a series of formates. Chemical Physics Letters, 2006, 432, 57-61.	2.6	28
187	Atmospheric chemistry of trans-CF ₃ CH=CHF: products and mechanisms of hydroxyl radical and chlorine atom initiated oxidation. Atmospheric Chemistry and Physics, 2008, 8, 3141-3147.	4.9	28
188	Strategic Materials in the Automobile: A Comprehensive Assessment of Strategic and Minor Metals Use in Passenger Cars and Light Trucks. Environmental Science & Environmental Science & 2017, 51, 14436-14444.	10.0	28
189	Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aromatic organic compounds for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2018, 18, 9329-9349.	4.9	28
190	Review of electrofuel feasibilityâ€"prospects for road, ocean, and air transport. Progress in Energy, 2022, 4, 042007.	10.9	28
191	Product study of the C2H5O2+HO2 reaction in 760 Torr of air at 284–312 K. Chemical Physics Letters, 2000, 321, 57-61.	2.6	27
192	Atmospheric chemistry of HCFC-133a: the UV absorption spectra of CF3CClH and CF3CClHO2 radicals, reactions of CF3CClHO2 with NO and NO2, and fate of CF3CClHO radicals. The Journal of Physical Chemistry, 1995, 99, 13437-13444.	2.9	26
193	Atmospheric Chemistry of HFC-227ca:Â Spectrokinetic Investigation of the CF3CF2CF2O2Radical, Its Reactions with NO and NO2, and the Atmospheric Fate of the CF3CF2CF2O Radical. The Journal of Physical Chemistry, 1996, 100, 6572-6579.	2.9	26
194	Atmospheric chemistry of perfluorobutenes (CF3CFCFCF3 and CF3CF2CFCF2): Kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids. Atmospheric Environment, 2009, 43, 3717-3724.	4.1	26
195	Assessing Economic Modulation of Future Critical Materials Use: The Case of Automotive-Related Platinum Group Metals. Environmental Science & Environm	10.0	26
196	Contribution of vehicle exhaust to the global N2O budget. Chemosphere, 2000, 2, 387-395.	1.2	25
197	Kinetics of the reactions of chlorine atoms with a series of acetates. Chemical Physics Letters, 2009, 474, 268-272.	2.6	25
198	Measurements of the gas phase UV absorption spectrum of C2H5O $2\hat{A}$ · radicals and of the temperature dependence of the rate constant for their self-reaction. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 42, 173-185.	3.9	24

#	Article	IF	CITATIONS
199	Atmospheric Chemistry of HFC-143a: Spectrokinetic Investigation of the CF3CH2O2.bul. Radical, Its Reactions with NO and NO2, and the Fate of CF3CH2O. The Journal of Physical Chemistry, 1994, 98, 9518-9525.	2.9	24
200	Atmospheric chemistry of CF3O radicals: reaction with O3. Chemical Physics Letters, 1995, 234, 187-194.	2.6	24
201	The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resources, Conservation and Recycling, 2021, 164, 105208.	10.8	24
202	Greenhouse gas emission benefits of vehicle lightweighting: Monte Carlo probabalistic analysis of the multi material lightweight vehicle glider. Transportation Research, Part D: Transport and Environment, 2018, 62, 1-10.	6.8	23
203	The UV absorption spectra and kinetics of the self reactions of CH2ClO2 and CH2FO2 radicals in the gas phase. International Journal of Chemical Kinetics, 1988, 20, 815-826.	1.6	21
204	Atmospheric Chemistry of HFE-7500 [n-C3F7CF(OC2H5)CF(CF3)2]: Reaction with OH Radicals and Cl Atoms and Atmospheric Fate ofn-C3F7CF(OCHO•)CF(CF3)2andn-C3F7CF(OCH2CH2O•)CF(CF3)2Radicals. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	21
205	Atmospheric Chemistry of 3-Pentanol: Kinetics, Mechanisms, and Products of Cl Atom and OH Radical Initiated Oxidation in the Presence and Absence of NO _{<i>X</i>} . Journal of Physical Chemistry A, 2008, 112, 8053-8060.	2.5	21
206	Atmospheric chemistry of CF3CF2H and CF3CF2CF2CF2H: Kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids. Chemical Physics Letters, 2009, 473, 251-256.	2.6	21
207	Smoke Point Measurements of Diesel-Range Hydrocarbon–Oxygenate Blends Using a Novel Approach for Fuel Blend Selection. Energy & Diesels, 2015, 29, 7641-7649.	5.1	21
208	CH3Cl, CH2Cl2, CHCl3, and CCl4: Infrared spectra, radiative efficiencies, and global warming potentials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 174, 56-64.	2.3	21
209	Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids. Environmental Science & Eamp; Technology, 2019, 53, 1245-1251.	10.0	21
210	Vehicle Emissions and Urban Air Quality: 60 Years of Progress. Atmosphere, 2022, 13, 650.	2.3	21
211	A kinetic study of the reaction of chlorine and fluorine atoms with CF3CHO at 295 ${\rm \hat{A}}\pm2$ K. International Journal of Chemical Kinetics, 1993, 25, 819-824.	1.6	20
212	Gas phase UV and IR absorption spectra of CxF2x+1CHO (x = 1â€"4). Journal of Fluorine Chemistry, 2004, 125, 1925-1932.	1.7	20
213	Pulsed Laser Photolysis Vacuum UV Laser-Induced Fluorescence Kinetic Study of the Gas-Phase Reactions of Cl(2P3/2) Atoms with C3â^'C6Ketones. Journal of Physical Chemistry A, 2007, 111, 1271-1276.	2.5	20
214	Light-Duty Vehicle CO ₂ Targets Consistent with 450 ppm CO ₂ Stabilization. Environmental Science & Enviro	10.0	20
215	Oxidation Stability of Rapeseed Biodiesel/Petroleum Diesel Blends. Energy &	5.1	20
216	The role of pickup truck electrification in the decarbonization of light-duty vehicles. Environmental Research Letters, 2022, 17, 034031.	5.2	20

#	Article	IF	CITATIONS
217	Role of Methyl Nitrate in Plasma Exhaust Treatment. Environmental Science & En	10.0	19
218	Atmospheric Chemistry of Pivalaldehyde and Isobutyraldehyde:Â Kinetics and Mechanisms of Reactions with Cl Atoms, Fate of (CH3)3CC(O) and (CH3)2CHC(O) Radicals, and Self-Reaction Kinetics of (CH3)3CC(O)O2and (CH3)2CHC(O)O2Radicals. Journal of Physical Chemistry A, 2004, 108, 795-805.	2.5	19
219	Gas phase UV and IR absorption spectra of CF3CH2CH2OH and F(CF2CF2)xCH2CH2OH (x=2, 3, 4). Journal of Fluorine Chemistry, 2005, 126, 1288-1296.	1.7	19
220	Kinetics of the gas phase reactions of chlorine atoms with a series of ketones. Chemical Physics Letters, 2006, 431, 257-260.	2.6	19
221	Atmospheric Chemistry of <i>i</i> -Butanol. Journal of Physical Chemistry A, 2010, 114, 12462-12469.	2.5	19
222	Products and Mechanism of the Reaction of Chlorine Atoms with 3-Pentanone in 700â^950 Torr of N ₂ /O ₂ Diluent at 297â^515 K. Journal of Physical Chemistry A, 2010, 114, 343-354.	2.5	19
223	Life Cycle Greenhouse Gas Emissions for Last-Mile Parcel Delivery by Automated Vehicles and Robots. Environmental Science & En	10.0	19
224	Atmospheric Chemistry of HFC-236fa: Spectrokinetic Investigation of the CF3CHO2.bul.CF3 Radical, Its Reaction with NO, and the Fate of the CF3CHO.bul.CF3 Radical. The Journal of Physical Chemistry, 1995, 99, 5373-5378.	2.9	18
225	Atmospheric chemistry of hexafluorocyclobutene, octafluorocyclopentene, and hexafluoro-1,3-butadiene. Chemical Physics Letters, 2011, 507, 19-23.	2.6	18
226	Atmospheric chemistry of CF3CH2OCH3: Reaction with chlorine atoms and OH radicals, kinetics, degradation mechanism and global warming potential. Chemical Physics Letters, 2012, 524, 32-37.	2.6	18
227	Atmospheric Chemistry of Benzyl Alcohol: Kinetics and Mechanism of Reaction with OH Radicals. Environmental Science & Environm	10.0	18
228	Atmospheric Oxidation of Polyfluorinated Amides: Historical Source of Perfluorinated Carboxylic Acids to the Environment. Environmental Science & Environmental Science & 2013, 47, 4317-4324.	10.0	18
229	Perfluorotributylamine: A novel long-lived greenhouse gas. Geophysical Research Letters, 2013, 40, 6010-6015.	4.0	18
230	Estimation of direct radiative forcing due to non-methane hydrocarbons. Atmospheric Environment, 1999, 33, 759-767.	4.1	17
231	Atmospheric degradation mechanism of CF3OCF2H. Chemical Physics Letters, 2001, 343, 296-302.	2.6	17
232	Do aerosols act as catalysts in the OH radical initiated atmospheric oxidation of volatile organic compounds?. Atmospheric Environment, 2002, 36, 5947-5952.	4.1	17
233	IR spectrum and radiative forcing of CF4revisited. Journal of Geophysical Research, 2005, 110 , .	3.3	17
234	Implications of the Energy Independence and Security Act of 2007 for the US Light-Duty Vehicle Fleet. , $0, , .$		17

#	Article	IF	CITATIONS
235	Kinetics and Mechanism of Chlorine-Atom-Initiated Oxidation of Allyl Alcohol, 3-Buten-2-ol, and 2-Methyl-3-buten-2-ol. Journal of Physical Chemistry A, 2010, 114, 4224-4231.	2.5	17
236	Kinetics and Mechanism of the Reaction of Methacrolein with Chlorine Atoms in $1\hat{a}^950$ Torr of N ₂ 0 ₂ Diluent at 297 K. Journal of Physical Chemistry A, 2010, 114, 6850-6860.	2.5	17
237	Sustainable Mobility, Future Fuels, and the Periodic Table. Journal of Chemical Education, 2013, 90, 440-445.	2.3	17
238	Atmospheric chemistry of cis-CF3CH CHCl (HCFO-1233zd(Z)): Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3. Chemical Physics Letters, 2015, 639, 289-293.	2.6	17
239	Atmospheric Chemistry of CH3CHF2(HFC-152a):Â Kinetics, Mechanisms, and Products of Cl Atom- and OH Radical-Initiated Oxidation in the Presence and Absence of NOx. Journal of Physical Chemistry A, 2005, 109, 9061-9069.	2.5	16
240	A kinetics and mechanistic study of the OH and NO2 initiated oxidation of cyclohexa-1,3-diene in the gas phase. Physical Chemistry Chemical Physics, 2005, 7, 1194.	2.8	16
241	Kinetics, Products, and Stereochemistry of the Reaction of Chlorine Atoms withcis- andtrans-2-Butene in 10a ⁻⁷ 700 Torr of N2or N2/O2Diluent at 297 K. Journal of Physical Chemistry A, 2007, 111, 1286-1299.	2.5	16
242	Products and Mechanism of the Reaction of Cl with Butanone in N ₂ /O ₂ Diluent at 297â°'526 K. Journal of Physical Chemistry A, 2009, 113, 2424-2437.	2.5	16
243	Atmospheric chemistry of t-CF3CHHCl: products and mechanisms of the gas-phase reactions with chlorine atoms and hydroxyl radicals. Physical Chemistry Chemical Physics, 2012, 14, 1735-1748.	2.8	16
244	Atmospheric chemistry of $CxF2x+1CHCH2$ ($x=1, 2, 4, 6$ and 8): Radiative efficiencies and global warming potentials. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233, 50-52.	3.9	16
245	Atmospheric Chemistry of HFC-152: UV Absorption Spectrum of CH2FCFHO2 Radicals, Kinetics of the Reaction CH2FCFHO2 + NO .fwdarw. CH2FCHFO + NO2, and Fate of the Alkoxy Radical CH2FCFHO. The Journal of Physical Chemistry, 1994, 98, 5435-5440.	2.9	15
246	Comment: A kinetic study of chlorine radical reactions with ketones by laser-photolysis technique by Olsson et al International Journal of Chemical Kinetics, 1998, 30, 309-310.	1.6	15
247	CF3ONO2 yield in the gas phase reaction of CF3O2 radicals with NO. Chemical Physics Letters, 2004, 388, 242-247.	2.6	15
248	A Classroom Demonstration of Water-Induced Phase Separation of Alcohol–Gasoline Biofuel Blends. Journal of Chemical Education, 2009, 86, 1045.	2.3	15
249	When Comparing Alternative Fuelâ€Vehicle Systems, Life Cycle Assessment Studies Should Consider Trends in Oil Production. Journal of Industrial Ecology, 2017, 21, 244-248.	5.5	15
250	Novel Method to Estimate the Octane Ratings of Ethanol–Gasoline Mixtures Using Base Fuel Properties. Energy & Samp; Fuels, 2020, 34, 4632-4642.	5.1	15
251	Seasonal distribution and drivers of surface fine particulate matter and organic aerosol over the Indo-Gangetic Plain. Atmospheric Chemistry and Physics, 2021, 21, 10881-10909.	4.9	15
252	Carbon implications of marginal oils from market-derived demand shocks. Nature, 2021, 599, 80-84.	27.8	15

#	Article	IF	CITATIONS
253	Kinetics and Mechanism of the Gas-Phase Reaction of Cl Atoms and OH Radicals with Fluorobenzene at 296 K. Journal of Physical Chemistry A, 2002, 106, 7779-7787.	2.5	14
254	Biofuels, vehicle emissions, and urban air quality. Faraday Discussions, 2016, 189, 121-136.	3.2	14
255	Kinetics of Elementary Reactions in the Chain Chlorination of Cyclopropane. Journal of Physical Chemistry A, 2003, 107, 2003-2010.	2.5	13
256	Low-CO ₂ Electricity and Hydrogen: A Help or Hindrance for Electric and Hydrogen Vehicles?. Environmental Science &	10.0	13
257	Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs. Faraday Discussions, 2017, 200, 453-474.	3.2	13
258	Atmospheric chemistry of CF3CFHOCF3: kinetics of the reaction with Cl atoms and fate of CF3CFO() Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
259	Importance of O(3P) atoms and OH radicals in hydrocarbon oxidation during the nonthermal plasma treatment of diesel exhaust inferred using relative-rate methods. International Journal of Chemical Kinetics, 2003, 35, 231-238.	1.6	12
260	Kinetics and products of chlorine atom initiated oxidation of HCF ₂ OCF ₂ OCF ₂ OCF ₂ OCF ₂ O(CF <sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub)o(cf<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub)o(cf<sub>O(CF<sub>O(CF<sub>O(CF<sub>O(CF<sub)o(cf<sub>O(CF<sub)o(cf<sub>O(CF<sub)o(cf<sub>O(CF<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(c< td=""><td>n <td>)>CF_{2<}</td></td></sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(cf<sub)o(c<></sub)o(cf_{</sub)o(cf_{</sub)o(cf}}</sub)o(cf</sub></sub></sub></sub></sub)o(cf</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	n <td>)>CF_{2<}</td>)>CF _{2<}
261	Atmospheric Chemistry of (CF3)2CHOCH3, (CF3)2CHOCHO, and CF3C(O)OCH3. Journal of Physical Chemistry A, 2015, 119, 10540-10552.	2.5	12
262	Oxidation and Polymerization of Soybean Biodiesel/Petroleum Diesel Blends. Energy &	5.1	12
263	Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: Front subframe case study. Sustainable Materials and Technologies, 2021, 28, e00263.	3.3	12
264	Characterizing the Changes in Material Use due to Vehicle Electrification. Environmental Science & Electrification amp; Technology, 2021, 55, 10097-10107.	10.0	12
265	Kinetics and mechanism of the gas phase reaction of Cl atoms with iodobenzene. Chemical Physics Letters, 2001, 350, 423-426.	2.6	11
266	Atmospheric chemistry of CH2FOCH2F: Reaction with Cl atoms and atmospheric fate of CH2FOCHFOÂ-radicals. International Journal of Chemical Kinetics, 2002, 34, 139-147.	1.6	11
267	Atmospheric chemistry of CF3CH2CF2CH3 (HFC-365mfc): Kinetics and mechanism of chlorine atom initiated oxidation, infrared spectrum, and global warming potential. Chemical Physics Letters, 2008, 462, 164-168.	2.6	11
268	Kinetics of the reaction of chlorine atoms with isoprene (2-methyl 1,3-butadiene, CH2C(CH3)CH CH2) at 297 $\hat{A}\pm2$ K. Chemical Physics Letters, 2009, 472, 39-43.	2.6	11
269	100 Years of Progress in Gas-Phase Atmospheric Chemistry Research. Meteorological Monographs, 2019, 59, 10.1-10.52.	5.0	11
270	Life-Cycle Greenhouse Gas Emission Benefits of Natural Gas Vehicles. ACS Sustainable Chemistry and Engineering, 2021, 9, 7813-7823.	6.7	11

#	Article	IF	CITATIONS
271	Opinion: The germicidal effect of ambient air (open-air factor) revisited. Atmospheric Chemistry and Physics, 2021, 21, 13011-13018.	4.9	11
272	The case for a more precise definition of regulated PFAS. Environmental Sciences: Processes and Impacts, 2021, 23, 1834-1838.	3.5	11
273	Kinetics of the reactions of chlorine atoms with CH3ONO and CH3ONO2. International Journal of Chemical Kinetics, 1999, 31, 357-359.	1.6	10
274	Atmospheric Oxidation Mechanism of Methyl Pivalate, (CH3)3CC(O)OCH3. Journal of Physical Chemistry A, 2001, 105, 7225-7235.	2.5	10
275	Kinetics and mechanism of the gas phase reaction of Cl atoms and OH radicals with bromobenzene. Chemical Physics Letters, 2002, 353, 77-83.	2.6	10
276	Atmospheric Chemistry of a Model Biodiesel Fuel, CH3C(O)O(CH2)2OC(O)CH3:Â Kinetics, Mechanisms, and Products of Cl Atom and OH Radical Initiated Oxidation in the Presence and Absence of NOx. Journal of Physical Chemistry A, 2007, 111, 2547-2554.	2.5	10
277	Mechanism of the gas phase reaction of chlorine atoms with butanone. Chemical Physics Letters, 2007, 439, 274-279.	2.6	10
278	Atmospheric Chemistry of HCF ₂ O(CF ₂ CF _{O(cF₂HCF_{EF_{EF_{O(cF_{EF_{EF_{O(cF_{EF_E}}	2.1	10
279	Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy. Sustainability, 2013, 5, 1845-1862.	3.2	10
280	Depolymerization of Polyester Polymers from the Oxidation of Soybean Biodiesel. Energy & Depolymerization of Polyester Polymers from the Oxidation of Soybean Biodiesel. Energy & Depolymerization of Polyester Polymers from the Oxidation of Soybean Biodiesel. Energy & Depolymerization of Polyester Polymers from the Oxidation of Soybean Biodiesel. Energy & Depolymerization of Polyester Polymers from the Oxidation of Soybean Biodiesel. Energy & Depolymers from the Oxidation of Soybean Biodiesel.	5.1	10
281	Life cycle water use of gasoline and electric light-duty vehicles in China. Resources, Conservation and Recycling, 2020, 154, 104628.	10.8	10
282	Kinetics and Mechanism of the Reactions of 2,3-Butadione with F and Cl Atoms, UV Absorption Spectra of CH3C(O)C(O)CH2· and CH3C(O)C(O)CH2O· Radicals, and Atmospheric Fate of CH3C(O)C(O)CH2O· Radicals. Journal of Physical Chemistry A, 1998, 102, 8913-8923.	2.5	9
283	CHF ₂ OCHF ₂ (HFE-134): IR Spectrum and Kinetics and Products of the Chlorine-Atom-Initiated Oxidation. Journal of Physical Chemistry A, 2010, 114, 4963-4967.	2.5	9
284	Atmospheric chemistry of C2F5CH2OCH3 (HFE-365mcf). Physical Chemistry Chemical Physics, 2011, 13, 2758-2764.	2.8	9
285	Corrigendum to "Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates" published in Atmos. Chem. Phys. 10, 9059–9223, 2010. Atmospheric Chemistry and Physics, 2013, 13, 7359-7359.	4.9	9
286	Kinetic and Product Study of the Cl-Initiated Oxidation of 1,2,3-Trichloropropane (CH2ClCHClCH2Cl). Journal of Physical Chemistry A, 2001, 105, 5123-5130.	2.5	8
287	The radiative efficiency of HCF2OCF2OCF2CF2OCF2H (H-Galden 1040x) revisited. Atmospheric Environment, 2009, 43, 4247-4249.	4.1	8
288	Atmospheric chemistry of (CF3)2CFOCH3. Chemical Physics Letters, 2014, 607, 5-9.	2.6	8

#	Article	IF	Citations
289	Impact of Powertrain Type on Potential Life Cycle Greenhouse Gas Emission Reductions from a Real World Lightweight Glider. , 2017, , .		8
290	Mobile Measurements of Carbonaceous Aerosol in Microenvironments to Discern Contributions from Traffic and Solid Fuel Burning. Environmental Science and Technology Letters, 0, , .	8.7	8
291	Atmospheric chemistry of CF3COOH: Kinetics of fluorine and chlorine atom reaction at 295 ${\rm \hat{A}}\pm2$ K. International Journal of Chemical Kinetics, 1995, 27, 189-194.	1.6	7
292	CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies. International Journal of Chemical Kinetics, 2003, 35, 159-165.	1.6	7
293	Vacuum ultraviolet laser-induced fluorescence kinetic study of the reactions of CI atoms with fluoroalkenes ($CxF2x+1CHi£\frac{3}{4}CH2,x=1,2,4,6$, and 8) at low pressures. International Journal of Chemical Kinetics, 2007, 39, 328-332.	1.6	7
294	Molecular structure and IR absorption spectra of perfluorinated aldehyde hydrates (n-CxF2x+1CH(OH)2, x=1â€"4). Journal of Fluorine Chemistry, 2008, 129, 1187-1192.	1.7	7
295	Pulsed laser photolysis vacuum UV laser-induced fluorescence kinetic study of the reactions of Cl(2P3/2) atoms with ethyl formate, n-propyl formate, and n-butyl formate. Chemical Physics Letters, 2008, 467, 70-73.	2.6	7
296	Kinetics and Mechanism of the Reaction of Chlorine Atoms with n-Pentanal. Journal of Physical Chemistry A, 2008, 112, 1741-1746.	2.5	7
297	Relative Rate Study of the Kinetics, Mechanism, and Thermodynamics of the Reaction of Chlorine Atoms with CF ₃ CFâ•CH ₂ (HFO-1234yf) in 650–950 Torr of N ₂ or N ₂ /O ₂ Diluent at 296–462 K. Journal of Physical Chemistry A, 2012, 116, 5958-5971.	2.5	7
298	Urban–Rural Disparities in Air Quality Responses to Traffic Changes in a Megacity of China Revealed Using Machine Learning. Environmental Science and Technology Letters, 2022, 9, 592-598.	8.7	7
299	Variability of NO ₂ /NO <i>_x</i> Ratios in Multiple Microenvironments from On-Road and Near-Roadway Measurements. ACS ES&T Engineering, 2022, 2, 1599-1610.	7.6	7
300	Formation of Methyl Nitrite and Methyl Nitrate during Plasma Treatment of Diesel Exhaust. Environmental Science & Environmenta	10.0	6
301	Atmospheric chemistry of CH3CHF2 (R-152a): mechanism of the CH3CF2O2+HO2 reaction. Chemical Physics Letters, 2004, 391, 165-169.	2.6	6
302	Atmospheric chemistry of cyclohexanone: UV spectrum and kinetics of reaction with chlorine atoms. International Journal of Chemical Kinetics, 2008, 40, 223-229.	1.6	6
303	Atmospheric chemistry of hexa- and penta-fluorobenzene: UV photolysis and kinetics and mechanisms of the reactions of Cl atoms and OH radicals. Physical Chemistry Chemical Physics, 2018, 20, 28796-28809.	2.8	6
304	A classroom demonstration of the formation of aerosols from biogenic hydrocarbons. Journal of Chemical Education, 2000, 77, 1584.	2.3	5
305	Atmospheric chemistry of CF3 CFHOCF3: Reaction with OH radicals, atmospheric lifetime, and global warming potential. Journal of Geophysical Research, 2002, 107, ACH 4-1-ACH 4-6.	3.3	5
306	Atmospheric chemistry of C4F9O(CH2)3OC4F9 and CF3CFHCF2O(CH2)3OCF3CFHCF2: Lifetimes, degradation products, and environmental impact. Chemical Physics Letters, 2006, 427, 41-46.	2.6	5

#	Article	IF	CITATIONS
307	Atmospheric Chemistry of 2-ethoxy-3,3,4,4,5-pentafluorotetrahydro-2,5-bis[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-furan:Â Kinetics, Mechanisms, and Products of Cl Atom and OH Radical Initiated Oxidation. Environmental Science & Eamp; Technology, 2007, 41, 7389-7395.	10.0	5
308	Atmospheric chemistry of C8F17CH2CHO: Yield from C8F17CH2CH2OH (8:2 FTOH) oxidation, kinetics and mechanisms of reactions with Cl atoms and OH radicals. Chemical Physics Letters, 2008, 461, 198-202.	2.6	5
309	Kinetics of the gasâ€phase reactions of chlorine atoms with CH ₂ F ₂ , CH ₃ CCI ₃ , and CF ₃ CFH ₂ over the temperature range 253–553 K. International Journal of Chemical Kinetics, 2009, 41, 401-406.	1.6	5
310	Atmospheric Chemistry of <i>n</i> -C ₆ F ₁₃ CH ₂ CHO: Formation from <i>n</i> -C ₆ F ₁₃ CH ₂ CH ₂ OH, Kinetics, and Mechanisms of Reactions with Chlorine Atoms and OH Radicals. Journal of Physical Chemistry A, 2010, 114, 6131-6137.	2.5	5
311	Comment on "Environmental Fate of the Next Generation Refrigerant 2,3,3,3-Tetrafluoropropene (HFO-1234yf)″ Environmental Science & Environmenta	10.0	5
312	Life cycle assessment is the most relevant framework to evaluate biofuel greenhouse gas burdens. Biofuels, Bioproducts and Biorefining, 2017, 11, 407-416.	3.7	5
313	Atmospheric Chemistry of Halogenated Organic Compounds. , 2017, , 305-402.		5
314	Commentary on "carbon balance effects of US biofuel production and use,―by DeCicco et al. (2016). Climatic Change, 2017, 144, 111-119.	3.6	5
315	Products and mechanism of the OH-initiated photo-oxidation of perfluoro ethyl vinyl ether, C ₂ F ₅ OCFF ₂ . Physical Chemistry Chemical Physics, 2018, 20, 11306-11316.	2.8	5
316	Asia Pacific road transportation emissions, 1900–2050. Faraday Discussions, 2021, 226, 53-73.	3.2	5
317	PLP–LIF study of the reactions of chlorine atoms with C2H2, C2H4, and C3H6 in 2–100 Torr of N2 diluent at 295 K. Chemical Physics Letters, 2010, 494, 174-178.	2.6	4
318	Kinetics and mechanisms of OHâ€initiated oxidation of small unsaturated alcohols. International Journal of Chemical Kinetics, 2010, 42, 151-158.	1.6	4
319	Relative integrated IR absorption in the atmospheric window is not the same as relative radiative efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E178-9; author reply E180.	7.1	4
320	Atmospheric chemistry of (Z)-CF3CHî€CHCl: products and mechanisms of the Cl atom, OH radical and O3 reactions, and role of (E)–(Z) isomerization. Physical Chemistry Chemical Physics, 2018, 20, 27949-27958.	2.8	4
321	Model Reactions Involving Ester Functional Groups during Thermoâ€Oxidative Degradation of Biodiesel. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1153-1161.	1.9	4
322	Atmospheric Chemistry of Methylcyclopentadienyl Manganese Tricarbonyl:Â Photolysis, Reaction with Hydroxyl Radicals and Ozone. Environmental Science & Environmental Science & 1999, 33, 4232-4238.	10.0	3
323	Kinetics of the gas phase reactions of chlorine atoms and OH radicals with CF3CBrCH2 and CF3CF2CBrCH2. Chemical Physics Letters, 2009, 482, 20-23.	2.6	3

Comment on "Kinetics of the reactions of Cl atoms with 2-buten-1-ol, 2-methyl-2-propen-1-ol, and 3-methyl-2-buten-1-ol as a function of temperature―by Rodriguez et al. (J. Atmos. Chem. (2008)) Tj ETQq0 0 0 rg BT\$\dot{2}\Overlock 10 Tf 50

#	Article	IF	CITATIONS
325	Temperature (290â \in 400K) and pressure (5â \in 900Torr) dependence of the kinetics of the reactions of chlorine atoms with propene and 1-butene. Chemical Physics Letters, 2011, 501, 187-192.	2.6	3
326	Atmospheric chemistry of CF3CF2OCH3. Chemical Physics Letters, 2016, 653, 149-154.	2.6	3
327	REPRINT OF: Infrared absorption cross-sections in HITRAN2016 and beyond: Expansion for climate, environment, and atmospheric applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238, 106708.	2.3	3
328	Understanding Ridesourcing Mobility and the Future of Electrification: A Comparative Study in Beijing. Journal of Urban Technology, 2021, 28, 217-236.	4.7	2
329	A kinetic study of the reaction of chlorine and fluorine atoms with HC(O)F at $295 \text{Å} \pm 2$ K. International Journal of Chemical Kinetics, 1997 , 29 , 619 - 625 .	1.6	2
330	Comment on "Nighttime Tropospheric Chemistry: Kinetics and Product Studies in the Reaction of 4-Alkyl- and 4-Alkoxytoluenes with NO3in Gas Phase― Environmental Science & Chemistry: Technology, 2000, 34, 2875-2875.	10.0	1
331	Cost-Effective Vehicle and Fuel Technology Choices in a Carbon-Constrained World. , 2010, , 91-111.		1
332	Comment on "Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use― Environmental Science & Environmental Science & 2013, 47, 2139-2140.	10.0	1
333	Nitrogen Oxides: Vehicle Emissions and Atmospheric Chemistry. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 101-113.	0.2	1
334	Atmospheric chemistry and the biosphere: general discussion. Faraday Discussions, 2017, 200, 195-228.	3.2	1
335	The air we breathe: Past, present, and future: general discussion. Faraday Discussions, 2017, 200, 501-527.	3.2	1
336	IUPAC in the (real) clouds. Chemistry International, 2018, 40, 10-13.	0.3	1
337	Atmospheric chemistry of $(\langle i\rangle Z\langle i\rangle)$ - and $(\langle i\rangle E\langle i\rangle)$ -1,2-dichloroethene: kinetics and mechanisms of the reactions with Cl atoms, OH radicals, and O $\langle sub\rangle 3\langle sub\rangle$. Physical Chemistry Chemical Physics, 2022, 24, 7356-7373.	2.8	1
338	Emissions Omissions. Science, 2010, 327, 268-269.	12.6	0
339	Products from the Oxidation of n-Butane from 298 to 735 K Using Either Cl Atom or Thermal Initiation: Formation of Acetone and Acetic Acid—Possible Roaming Reactions?. Journal of Physical Chemistry A, 2017, 121, 8543-8560.	2.5	O
340	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	3.2	0
341	Photochemistry of 2,2-dichloroethanol: kinetics and mechanism of the reaction with Cl atoms and OH radicals. Environmental Sciences: Processes and Impacts, 2020, 22, 719-727.	3.5	0
342	General discussion: Sources, sinks and mitigation methods; evaluation of health impacts. Faraday Discussions, 2021, 226, 607-616.	3.2	0

ARTICLE IF CITATIONS

343 Sustainable Mobility: Insights from a Global Energy Model., 2013,, 207-229.