Paolo Cherubini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089598/publications.pdf Version: 2024-02-01

PAOLO CHERLIRINI

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	On the †Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, 2008, 60, 289-305.	3.5	646
3	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
4	Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biological Reviews, 2003, 78, 119-148.	10.4	345
5	Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees - Structure and Function, 2008, 22, 363-373.	1.9	212
6	Elevated <scp>CO</scp> ₂ increases treeâ€level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest <scp>FACE</scp> sites. New Phytologist, 2013, 197, 544-554.	7.3	210
7	Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 2021, 14, 190-196.	12.9	183
8	Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	175
9	Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. Journal of Ecology, 2002, 90, 839-850.	4.0	155
10	Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytologist, 2000, 146, 59-74.	7.3	140
11	Drought tolerance of two black poplar (<i>Populus nigra</i> L.) clones: contribution of carbohydrates and oxidative stress defence. Plant, Cell and Environment, 2009, 32, 1724-1736.	5.7	139
12	Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology, 2008, 28, 1287-1296.	3.1	129
13	Variations of vessel diameter and δ ¹³ C in false rings of <i>Arbutus unedo</i> L. reflect different environmental conditions. New Phytologist, 2010, 188, 1099-1112.	7.3	121
14	INTRA-ANNUAL DENSITY FLUCTUATIONS IN TREE RINGS: HOW, WHEN, WHERE, AND WHY?. IAWA Journal, 2016, 37, 232-259.	2.7	119
15	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
16	First detection of nitrogen from NOx in tree rings: a 15N/14N study near a motorway. Atmospheric Environment, 2004, 38, 2779-2787.	4.1	103
17	Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea) Tj ETQq1 1 ().784314 3.2	rgBT /Overlo 103
18	Drought impact on water use efficiency and intraâ€annual density fluctuations in <i><scp>E</scp>rica arborea</i> on <scp>E</scp> lba (<scp>I</scp> taly). Plant, Cell and Environment, 2014, 37, 382-391.	5.7	102

#	Article	IF	CITATIONS
19	Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees - Structure and Function, 2015, 29, 985-997.	1.9	100
20	Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications, 2018, 9, 3605.	12.8	98
21	Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agricultural and Forest Meteorology, 2005, 135, 22-34.	4.8	97
22	Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiology, 2012, 32, 401-413.	3.1	94
23	Neural basis of generation of conclusions in elementary deduction. NeuroImage, 2007, 38, 752-762.	4.2	91
24	Variabilité des relations climatcroissance chez Quercus ilex L. dans des peuplements forestiers ouverts de différentes densités dans l'ouest de la péninsule Ibérique. Annals of Forest Science, 2009 66, 802-802.	, 2.0	85
25	From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA Journal, 2019, 40, 155-182.	2.7	85
26	Potential sampling bias in long-term forest growth trends reconstructed from tree rings: A case study from the Italian Alps. Forest Ecology and Management, 1998, 109, 103-118.	3.2	83
27	Fast response of Scots pine to improved water availability reflected in treeâ€ring width and <i>l´</i> ¹³ C. Plant, Cell and Environment, 2010, 33, 1351-1360.	5.7	83
28	An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. Journal of Geophysical Research, 2008, 113, .	3.3	82
29	Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. International Journal of Climatology, 2008, 28, 173-183.	3.5	79
30	Northern forest tree populations are physiologically maladapted to drought. Nature Communications, 2018, 9, 5254.	12.8	78
31	Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species. Journal of Vegetation Science, 2008, 19, 425-436.	2.2	77
32	Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biology, 2013, 36, 1305-1318.	1.2	74
33	Spatiotenraporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Canadian Journal of Forest Research, 1996, 26, 991-1001.	1.7	73
34	Variations of Wood Anatomy and δ13C Within-Tree Rings of Coastal Pinus Pinaster Showing Intra-Annual Density Fluctuations. IAWA Journal, 2007, 28, 61-74.	2.7	72
35	Structure and Function of Intraâ \in "Annual Density Fluctuations: Mind the Gaps. Frontiers in Plant Science, 2016, 7, 595.	3.6	72
36	Tree-rings reflect the impact of climate change on Quercus ilex L. along a temperature gradient in Spain over the last 100years. Forest Ecology and Management, 2011, 262, 1807-1816.	3.2	70

#	Article	IF	CITATIONS
37	Anthropogenic Aerosols Cause Recent Pronounced Weakening of Asian Summer Monsoon Relative to Last Four Centuries. Geophysical Research Letters, 2019, 46, 5469-5479.	4.0	65
38	Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiology, 2003, 23, 997-1004.	3.1	64
39	Stand structure modulates the longâ€ŧerm vulnerability of <i>Pinus halepensis</i> to climatic drought in a semiarid Mediterranean ecosystem. Plant, Cell and Environment, 2012, 35, 1026-1039.	5.7	62
40	New Tree-Ring Evidence from the Pyrenees Reveals Western Mediterranean Climate Variability since Medieval Times. Journal of Climate, 2017, 30, 5295-5318.	3.2	62
41	Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climatic Change, 2009, 96, 185-201.	3.6	61
42	Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biology, 2013, 15, 210-219.	3.8	60
43	Olive Tree-Ring Problematic Dating: A Comparative Analysis on Santorini (Greece). PLoS ONE, 2013, 8, e54730.	2.5	60
44	The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.	12.8	59
45	Tree rings used to assess time since death of deadwood of different decay classes in beech and silver fir forests in the central Apennines (Molise, Italy). Canadian Journal of Forest Research, 2008, 38, 821-833.	1.7	56
46	Tree-Ring Stable Isotopes Reveal Twentieth-Century Increases in Water-Use Efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean Mountains. PLoS ONE, 2014, 9, e113136.	2.5	56
47	Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban Forestry and Urban Greening, 2016, 17, 177-191.	5.3	56
48	Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L Trees - Structure and Function, 2011, 25, 627-636.	1.9	55
49	Conditional and syllogistic deductive tasks dissociate functionally during premise integration. Human Brain Mapping, 2010, 31, 1430-1445.	3.6	53
50	Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations. Trees - Structure and Function, 2012, 26, 513-524.	1.9	53
51	Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature, 2021, 595, 66-69.	27.8	53
52	Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinas pinaster and Pinus pinea along a latitudinal gradient in Portugal. Forestry, 2014, 87, 598-605.	2.3	52
53	Which matters most for the formation of intra-annual density fluctuations in Pinus pinaster: age or size?. Trees - Structure and Function, 2015, 29, 237-245.	1.9	52
54	A Tree-Centered Approach to Assess Impacts of Extreme Climatic Events on Forests. Frontiers in Plant Science, 2016, 7, 1069.	3.6	51

#	Article	IF	CITATIONS
55	Tree Vitality and Forest Health: Can Tree-Ring Stable Isotopes Be Used as Indicators?. Current Forestry Reports, 2021, 7, 69-80.	7.4	51
56	Responses of leaf nitrogen and mobile carbohydrates in different <i>Quercus</i> species/provenances to moderate climate changes. Plant Biology, 2013, 15, 177-184.	3.8	50
57	Comparison of different methods of obtaining a resilient organic matter fraction in Alpine soils. Geoderma, 2008, 145, 355-369.	5.1	49
58	Tracing the influence of larchâ€budâ€moth insect outbreaks and weather conditions on larch treeâ€ring growth in Engadine (Switzerland) Oikos, 2008, 117, 161-172.	2.7	48
59	Early effects of water deficit on two parental clones of Populus nigra grown under different environmental conditions. Functional Plant Biology, 2010, 37, 244.	2.1	48
60	Specific Fluorescence in Situ Hybridization (FISH) Test to Highlight Colonization of Xylem Vessels by Xylella fastidiosa in Naturally Infected Olive Trees (Olea europaea L.). Frontiers in Plant Science, 2018, 9, 431.	3.6	47
61	Ozone air pollution effects on tree-ring growth, Â13C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species. Tree Physiology, 2007, 27, 941-949.	3.1	46
62	Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Annals of Forest Science, 2013, 70, 101-111.	2.0	46
63	Tree-ring carbon and oxygen isotopes indicate different water use strategies in three Mediterranean shrubs at Capo Caccia (Sardinia, Italy). Trees - Structure and Function, 2015, 29, 1593-1603.	1.9	46
64	Joint effects of climate, tree size, and year on annual tree growth derived from treeâ€ring records of ten globally distributed forests. Global Change Biology, 2022, 28, 245-266.	9.5	46
65	Tree rings of <i>Pinus nigra</i> from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Canadian Journal of Forest Research, 2008, 38, 744-759.	1.7	45
66	Combined use of relative and absolute dating techniques for detecting signals of Alpine landscape evolution during the late Pleistocene and early Holocene. Geomorphology, 2009, 112, 48-66.	2.6	45
67	Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Science of the Total Environment, 2010, 408, 586-593.	8.0	44
68	Charcoal fragments of Alpine soils as an indicator of landscape evolution during the Holocene in Val di Sole (Trentino, Italy). Holocene, 2010, 20, 67-79.	1.7	44
69	Response of Pinus leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, Southern Italy). Biological Conservation, 2007, 137, 507-519.	4.1	43
70	Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach. Atmospheric Environment, 2009, 43, 410-418.	4.1	43
71	Large scale brain activations predict reasoning profiles. NeuroImage, 2012, 59, 1752-1764.	4.2	43
72	Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. IForest, 2016, 9, 154-164.	1.4	43

#	Article	IF	CITATIONS
73	Oxygen isotopes in tree rings ofAbies alba: The climatic significance of interdecadal variations. Journal of Geophysical Research, 2000, 105, 12461-12470.	3.3	42
74	Dendrochronology of Quercus ilex L. and its potential use for climate reconstruction in the Mediterranean region. Canadian Journal of Forest Research, 2009, 39, 2486-2493.	1.7	42
75	Temporal variability of size–growth relationships in a Norway spruce forest: the influences of stand structure, logging, and climate. Canadian Journal of Forest Research, 2012, 42, 550-560.	1.7	40
76	Functional adjustments of xylem anatomy to climatic variability: insights from long-term <i>llex aquifolium</i> tree-ring series. Tree Physiology, 2015, 35, 817-828.	3.1	40
77	The Xylella fastidiosa-Resistant Olive Cultivar "Leccino―Has Stable Endophytic Microbiota during the Olive Quick Decline Syndrome (OQDS). Pathogens, 2020, 9, 35.	2.8	39
78	Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees - Structure and Function, 2013, 27, 211-227.	1.9	38
79	Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant and Soil, 2013, 372, 567-579.	3.7	37
80	Comparing methods to analyse anatomical features of tree rings with and without intra-annual density fluctuations (IADFs). Dendrochronologia, 2014, 32, 1-6.	2.2	37
81	Physico-chemical and microbiological evidence of exposure effects on Picea abies – Coarse woody debris at different stages of decay. Forest Ecology and Management, 2017, 391, 376-389.	3.2	37
82	Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density. Trees - Structure and Function, 2007, 21, 605-612.	1.9	36
83	Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements. Trees - Structure and Function, 2010, 24, 695-704.	1.9	36
84	Growth and Phenology of Three Dwarf Shrub Species in a Six-Year Soil Warming Experiment at the Alpine Treeline. PLoS ONE, 2014, 9, e100577.	2.5	36
85	OUP accepted manuscript. Tree Physiology, 2017, 37, 523-535.	3.1	36
86	Tree rings from a European beech forest chronosequence are useful for detecting growth trends and carbon sequestration. Canadian Journal of Forest Research, 2004, 34, 481-492.	1.7	35
87	Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tree Physiology, 2007, 27, 1741-1751.	3.1	34
88	Drought-triggered false ring formation in a Mediterranean shrub. Botany, 2010, 88, 545-555.	1.0	34
89	Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating. Biogeosciences, 2016, 13, 1537-1552.	3.3	34
90	Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Global Change Biology, 2007, 13, 1122-1137.	9.5	33

#	Article	IF	CITATIONS
91	Carbon and oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks in the boreal forest of Québec. Chemical Geology, 2008, 252, 80-87.	3.3	33
92	A Technical Perspective in Modern Tree-ring Research - How to Overcome Dendroecological and Wood Anatomical Challenges. Journal of Visualized Experiments, 2015, , .	0.3	33
93	Tree-ring Δ13C reveals the impact of past forest management on water-use efficiency in a Mediterranean oak coppice in Tuscany (Italy). Annals of Forest Science, 2010, 67, 510-510.	2.0	32
94	Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests. Science of the Total Environment, 2016, 569-570, 1064-1076.	8.0	32
95	Return of the moth: rethinking the effect of climate on insect outbreaks. Oecologia, 2020, 192, 543-552.	2.0	32
96	Does drought incite tree decline and death in <i>Austrocedrus chilensis</i> forests?. Journal of Vegetation Science, 2015, 26, 1171-1183.	2.2	31
97	Contrasting physiological responses to Mediterranean climate variability are revealed by intra-annual density fluctuations in tree rings of Quercus ilex L. and Pinus pinea L Tree Physiology, 2018, 38, 1213-1224.	3.1	31
98	Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily. Catena, 2012, 88, 14-26.	5.0	30
99	Elements content in tree rings from Xi'an, China and environmental variations in the past 30 years. Science of the Total Environment, 2018, 619-620, 120-126.	8.0	30
100	Morphology and ecological significance of intra-annual radial cracks in living conifers. Trees - Structure and Function, 1997, 11, 216.	1.9	29
101	Start of the dry season as a main determinant of inter-annual Mediterranean forest production variations. Agricultural and Forest Meteorology, 2014, 194, 197-206.	4.8	29
102	Groundwater controls on biogeomorphic succession and river channel morphodynamics. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1763-1785.	2.8	29
103	Drought limitation on tree growth at the Northern Hemisphere's highest tree line. Dendrochronologia, 2019, 53, 40-47.	2.2	29
104	Title is missing!. Climatic Change, 2003, 61, 237-248.	3.6	28
105	Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Tree Physiology, 2012, 32, 1471-1481.	3.1	28
106	Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps. European Journal of Forest Research, 2013, 132, 607-619.	2.5	28
107	Pine afforestation decreases the longâ€term performance of understorey shrubs in a semiâ€arid Mediterranean ecosystem: a stable isotope approach. Functional Ecology, 2015, 29, 15-25.	3.6	28
108	Climatic isotope signals in tree rings masked by air pollution: A case study conducted along the Mont Blanc Tunnel access road (Western Alps, Italy). Atmospheric Environment, 2012, 61, 169-179.	4.1	27

#	Article	IF	CITATIONS
109	Wood Growth in Pure and Mixed Quercus ilex L. Forests: Drought Influence Depends on Site Conditions. Frontiers in Plant Science, 2019, 10, 397.	3.6	26
110	The olive-branch dating of the Santorini eruption. Antiquity, 2014, 88, 267-273.	1.0	25
111	The increase of atmospheric CO2 affects growth potential and intrinsic water-use efficiency of Norway spruce forests: insights from a multi-stable isotope analysis in tree rings of two Alpine chronosequences. Trees - Structure and Function, 2017, 31, 503-515.	1.9	25
112	Do tree-ring traits reflect different water deficit responses in young poplar clones (PopulusÂĂ—Âcanadensis Mönch â€ĩl-214' and P. deltoides â€̃Dvina')?. Trees - Structure and Function, 1 975-985.	2010), 25,	24
113	Wood-growth zones in Acacia seyal Delile in the Keita Valley, Niger: Is there any climatic signal?. Journal of Arid Environments, 2010, 74, 355-359.	2.4	23
114	Warmingâ€related growth responses at the southern limit distribution of mountain pine (<i>Pinus) Tj ETQq0 0 0 i</i>	rgBT /Over	lock 10 Tf 5
115	Multiple neural representations of elementary logical connectives. Neurolmage, 2016, 135, 300-310.	4.2	22
116	Generation of Hypotheses in Wason's 2–4–6 Task: an Information Theory Approach. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2005, 58, 309-332.	2.3	21
117	The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in Southern Kyrgyzstan. European Journal of Forest Research, 2009, 128, 531-542.	2.5	21
118	Lack of Gender Bias in Citation Rates of Publications by Dendrochronologists: What is Unique about this Discipline?. Tree-Ring Research, 2010, 66, 127-133.	0.6	21
119	Larix decidua δ180 tree-ring cellulose mainly reflects the isotopic signature of winter snow in a high-altitude glacial valley of the European Alps. Science of the Total Environment, 2017, 579, 230-237.	8.0	21
120	Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 8215-8227.	3.6	21
121	Summer drought and low earlywood density induce intra-annual radial cracks in conifers. Scandinavian Journal of Forest Research, 2006, 21, 151-157.	1.4	20
122	The impact of sea erosion on coastal Pinus pinea stands: A diachronic analysis combining tree-rings and ecological markers. Forest Ecology and Management, 2009, 257, 773-781.	3.2	20
123	Xylem Adjustment in Erica Arborea to Temperature and Moisture Availability in Contrasting Climates. IAWA Journal, 2013, 34, 109-126.	2.7	20
124	Are wood fibres as sensitive to environmental conditions as vessels in tree rings with intra-annual density fluctuations (IADFs) in Mediterranean species?. Trees - Structure and Function, 2016, 30, 971-983.	1.9	20
125	Tree rings show competition dynamics in abandonedCastanea sativacoppices after landâ€use changes. Journal of Vegetation Science, 2006, 17, 103-112.	2.2	19
126	Impact Factor Fever. Science, 2008, 322, 191-191.	12.6	19

8

#	Article	IF	CITATIONS
127	Non-stationary Responses of Tree-Ring Chronologies and Glacier Mass Balance to Climate in the European Alps. Arctic, Antarctic, and Alpine Research, 2011, 43, 56-65.	1.1	19
128	The frequency and severity of past droughts shape the drought sensitivity of juniper trees on the Tibetan plateau. Forest Ecology and Management, 2021, 486, 118968.	3.2	19
129	Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile). Trees - Structure and Function, 2012, 26, 1805-1819.	1.9	18
130	Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time?. Atmospheric Environment, 2022, 268, 118781.	4.1	18
131	Adverse implications of misdating in dendrochronology: Addressing the re-dating of the "Messiah― violin. Dendrochronologia, 2010, 28, 149-159.	2.2	17
132	Site conditions influence the climate signal of intra-annual density fluctuations in tree rings of Q. ilex L Annals of Forest Science, 2018, 75, 1.	2.0	17
133	Long-term decrease in subjective perceived efficacy of immunosuppressive treatment after heart transplantation. Journal of Heart and Lung Transplantation, 2003, 22, 1376-1380.	0.6	16
134	Species-specific indication of 13 tree species growth on climate warming in temperate forest community of northeast China. Ecological Indicators, 2021, 133, 108389.	6.3	16
135	Radiocarbon ages of soil charcoals from the southern Alps, Ticino, Switzerland. Nuclear Instruments & Methods in Physics Research B, 2007, 259, 398-402.	1.4	15
136	Exploring the potential of treeâ€ring chronologies from the Trafoi Valley (Central Italian Alps) to reconstruct glacier mass balance. Boreas, 2008, 37, 169-178.	2.4	14
137	Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s. Climate of the Past, 2017, 13, 1451-1471.	3.4	13
138	Pervasive tree-growth reduction in Tibetan juniper forests. Forest Ecology and Management, 2021, 480, 118642.	3.2	13
139	Missing the dog that failed to bark in the nighttime: on the overestimation of occurrences over non-occurrences in hypothesis testing. Psychological Research, 2013, 77, 348-370.	1.7	12
140	A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales. Science of the Total Environment, 2017, 574, 1261-1275.	8.0	12
141	Climate effects on stem radial growth of <i>Quercus suber</i> L.: does tree size matter?. Forestry, 2019, 92, 73-84.	2.3	12
142	Stable carbon and oxygen isotopes in tree rings show physiological responses of <i>Pericopsis elata</i> to precipitation in the Congo Basin. Journal of Tropical Ecology, 2016, 32, 213-225.	1.1	11
143	Tree-ring dating of musical instruments. Science, 2021, 373, 1434-1436.	12.6	11
144	Tree rings show competition dynamics in abandoned Castanea sativa coppices after land-use changes. Journal of Vegetation Science, 2006, 17, 103.	2.2	10

#	Article	IF	CITATIONS
145	Combination of Numerical Dating Techniques Using ¹⁰ Be in Rock Boulders and ¹⁴ C of Resilient Soil Organic Matter for Reconstructing the Chronology of Glacial and Periglacial Processes in a High Alpine Catchment during the Late Pleistocene and Early Holocene. Radiocarbon, 2009, 51, 537-552.	1.8	10
146	Preferences for different questions when testing hypotheses in an abstract task: Positivity does play a role, asymmetry does not. Acta Psychologica, 2010, 134, 162-174.	1.5	10
147	Effects of climate change on treeline trees in Sagarmatha (Mt. Everest, Central Himalaya). Journal of Vegetation Science, 2020, 31, 1144-1153.	2.2	10
148	Increase in ring width, vessel number and δ180 in olive trees infected with <i>Xylella fastidiosa</i> . Tree Physiology, 2020, 40, 1583-1594.	3.1	10
149	Xylem Plasticity in Pinus pinaster and Quercus ilex Growing at Sites with Different Water Availability in the Mediterranean Region: Relations between Intra-Annual Density Fluctuations and Environmental Conditions. Forests, 2020, 11, 379.	2.1	10
150	Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy). PLoS ONE, 2017, 12, e0169297.	2.5	10
151	Adaptation of a modelling strategy to predict the NPP of even-aged forest stands. European Journal of Forest Research, 2012, 131, 1175-1184.	2.5	9
152	Tree rings as biosensor to detect leakage of subsurface fossil CO2. International Journal of Greenhouse Gas Control, 2013, 19, 387-395.	4.6	9
153	First detection of glacial meltwater signature in treeâ€ring Î′ ¹⁸ <scp>O</scp> : Reconstructing past major glacier runoff events at <scp>L</scp> ago <scp>V</scp> erde (<scp>M</scp> iage <scp>G</scp> lacier, <scp>I</scp> taly). Boreas, 2014, 43, 600-607.	2.4	9
154	Treeâ€ring stable isotopes show different ecophysiological strategies in native and invasive woody species of a semiarid riparian ecosystem in the Great Plains of the United States. Ecohydrology, 2019, 12, e2074.	2.4	9
155	Tree-ring-based hydroclimatic reconstruction for the northwest Argentine Patagonia since 1055 CE and its teleconnection to large-scale atmospheric circulation. Global and Planetary Change, 2021, 202, 103496.	3.5	9
156	Increasing relevance of spring temperatures for Norway spruce trees in Davos, Switzerland, after the 1950s. Trees - Structure and Function, 2014, 28, 183-191.	1.9	8
157	Radial growth changes in Norway spruce montane and subalpine forests after strip cutting in the Swiss Alps. Forest Ecology and Management, 2016, 364, 145-153.	3.2	8
158	Effects of the lack of forest management on spatiotemporal dynamics of a subalpine <i>Pinus cembra</i> forest. Scandinavian Journal of Forest Research, 2017, 32, 142-153.	1.4	8
159	Working memory in healthy aging and in Parkinson's disease: evidence of interference effects. Aging, Neuropsychology, and Cognition, 2017, 24, 281-298.	1.3	8
160	Tree rings reveal hydroclimatic fingerprints of the Pacific Decadal Oscillation on the Tibetan Plateau. Climate Dynamics, 2019, 53, 1023-1037.	3.8	8
161	Physiological and growth responses to defoliation of older needles in Abies alba trees grown under two light regimes. Forest Ecology and Management, 2021, 484, 118947.	3.2	8
162	Tree physiological responses after biotic and abiotic disturbances revealed by a dual isotope approach. Tree Physiology, 2022, 42, 1-4.	3.1	8

#	Article	IF	CITATIONS
163	Monitoring air pollution close to a cement plant and in a multi-source industrial area through tree-ring analysis. Environmental Science and Pollution Research, 2021, 28, 54030-54040.	5.3	8
164	Modelling Future Growth of Mountain Forests Under Changing Environments. Managing Forest Ecosystems, 2022, , 223-262.	0.9	8
165	Assessment of forest GPP variations in central Italy. Canadian Journal of Forest Research, 2007, 37, 1944-1953.	1.7	7
166	Illuminating the mysterious world of truffles. Frontiers in Ecology and the Environment, 2012, 10, 462-463.	4.0	7
167	You are fair, but I expect you to also behave unfairly: Positive asymmetry in trait-behavior relations for moderate morality information. PLoS ONE, 2017, 12, e0180686.	2.5	7
168	Xylogenesis of compression and opposite wood in mountain pine at a Mediterranean treeline. Annals of Forest Science, 2018, 75, 1.	2.0	7
169	Tree rings show a different climatic response in a managed and a non-managed plantation of teak (Tectona grandis) in West Africa. IAWA Journal, 2015, 36, 409-427.	2.7	6
170	Profiling Online Poker Players: Are Executive Functions Correlated with Poker Ability and Problem Gambling?. Journal of Gambling Studies, 2018, 34, 823-851.	1.6	6
171	Towards a dendrochronologically refined date of the Laacher See eruption around 13,000 years ago. Quaternary Science Reviews, 2020, 229, 106128.	3.0	6
172	Evidence evaluation: Measure Z corresponds to human utility judgments better than measure L and optimal-experimental-design models Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 703-723.	0.9	5
173	Tree-ring volatile terpenes show potential to indicate fungal infection in asymptomatic mature Norway spruce trees in the Alps. Forestry, 2019, 92, 149-156.	2.3	5
174	Increasing atmospheric CO2 concentrations outweighs effects of stand density in determining growth and water use efficiency in Pinus ponderosa of the semi-arid grasslands of Nebraska (U.S.A.). Global Ecology and Conservation, 2020, 24, e01274.	2.1	5
175	Treeâ€ring stable isotopes and radiocarbon reveal pre―and postâ€eruption effects of volcanic processes on trees on Mt. Etna (Sicily, Italy). Ecohydrology, 2021, 14, e2340.	2.4	5
176	Inference-driven attention in symbolic and perceptual tasks: Biases toward expected and unexpected inputs. Quarterly Journal of Experimental Psychology, 2006, 59, 597-624.	1.1	4
177	Growth dynamics after historic disturbance in a montane forest and its implications for an endangered epiphytic lichen. Botanica Helvetica, 2008, 118, 111-127.	1.1	4
178	The olive tree-ring problematic dating. Antiquity, 2014, 88, 290-291.	1.0	4
179	Tree-ring width reveals the preparation of the 1974 Mt. Etna eruption. Scientific Reports, 2017, 7, 44019.	3.3	4
180	Tree-ring δ ¹⁸ 0 from an Alpine catchment reveals changes in glacier stream water inputs between 1980 and 2010. Arctic, Antarctic, and Alpine Research, 2019, 51, 250-264.	1.1	4

#	Article	IF	CITATIONS
181	Maximum July–September temperatures derived from treeâ€ring densities on the western Loess Plateau, China. International Journal of Climatology, 2021, 41, 779-790.	3.5	4
182	Wood anatomy and tree-ring stable isotopes indicate a recent decline in water-use efficiency in the desert tree Moringa peregrina. International Journal of Biometeorology, 2022, 66, 127-137.	3.0	4
183	Musical string instruments: Potential and limitations of tree-ring dating and provenancing to verify their authenticity. Dendrochronologia, 2022, 72, 125942.	2.2	4
184	Assessment of inter-annual forest production variations in Italy by the use of remote-sensing and ancillary data. European Journal of Remote Sensing, 2017, 50, 577-587.	3.5	3
185	Developing a Carbon Isotope Chronology for a Coastal Subtropical Tree Species with Variable Subannual Tree-Ring Growth. Journal of Coastal Research, 2018, 344, 828-842.	0.3	3
186	Increased El Niño–Southern Oscillation sensitivity of tree growth on the southern Tibetan Plateau since the 1970s. International Journal of Climatology, 2019, 39, 3465-3475.	3.5	3
187	Dendrochronologia's tutoring recipes: How to take samples for small basic dendroecological studies. Dendrochronologia, 2020, 64, 125774.	2.2	3
188	When fruits lose to animals: Disorganized search of semantic memory in Parkinson's disease Neuropsychology, 2021, 35, 529-539.	1.3	3
189	Effects of Asymmetric Questions on Impression Formation. Social Psychology, 2014, 45, 41-53.	0.7	3
190	Is Cork Growth a Reliable Proxy for Stem Diameter Growth in Cork Oak (Quercus suber L.)? Implications for Forest Management under Climate Change in Mediterranean Regions. Applied Sciences (Switzerland), 2021, 11, 11998.	2.5	3
191	Stable Isotopes in Tree Rings of Mediterranean Forests. Tree Physiology, 2022, , 605-629.	2.5	3
192	A breakthrough in the history of Dendrochronologia. Dendrochronologia, 2009, 27, 1.	2.2	2
193	The "dendrochronological community―at Rovaniemi, Finland, 2010: Lessons learned from the past and perspectives for the future. Dendrochronologia, 2012, 30, 195-197.	2.2	2
194	Climateâ€driven change in the water sourced by trees in a deâ€glaciating proglacial foreâ€field, Torres del Paine, Chile. Ecohydrology, 2019, 12, e2133.	2.4	2
195	Changes in Root–Shoot Allometric Relations in Alpine Norway Spruce Trees After Strip Cutting. Frontiers in Plant Science, 2021, 12, 703674.	3.6	2
196	Tree-ring stable isotopes indicate mass wasting processes at Radicofani in the upper Orcia Valley (Tuscany, Italy). Science of the Total Environment, 2022, 812, 152428.	8.0	2
197	Symposium on "Cognition and Rationality: Part l― Mind and Society, 2006, 5, 167-171.	1.3	1
198	Conditionals and conditional thinking. Mind and Society, 2008, 7, 21-34.	1.3	1

#	Article	IF	CITATIONS
199	Testing Hypotheses About Social Targets. Experimental Psychology, 2017, 64, 325-337.	0.7	1
200	In MemoriamFritz Hans Schweingruber 1936–2020. Tree-Ring Research, 2020, 76, 106.	0.6	1
201	"Tree rings and peopleâ€; an international conference on the future of dendrochronologyAn overview. Dendrochronologia, 2002, 20, 13-19.	2.2	0
202	Symposium on "Cognition and Rationality: Part II― Mind and Society, 2007, 6, 35-39.	1.3	0
203	Klaus Felix Kaiser. Tree-Ring Research, 2013, 69, 103-104.	0.6	0
204	In memoriam of Elio Corona (1930–2015). Dendrochronologia, 2016, 37, 128.	2.2	0
205	In memory of Harold C. Fritts (1928–2019): His legacy. Dendrochronologia, 2019, 58, 125636.	2.2	0
206	The unexplored potential of tree rings from Himalayan pristine forests to understand their history and provide answers to water and forest management in Bhutan. Dendrochronologia, 2019, 53, 37-39.	2.2	0
207	Intra-annual density fluctuations in silver fir are triggered by drought conditions. Trees - Structure and Function, 0, , 1.	1.9	0
208	Change is in the air: future challenges for applied forest research. IForest, 2009, 2, 56-58.	1.4	0