Nathalie Brouwers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089453/publications.pdf

Version: 2024-02-01

43 papers

3,868 citations

172457 29 h-index 265206 42 g-index

56 all docs

56
docs citations

56 times ranked 6400 citing authors

#	Article	IF	Citations
1	APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry, 2011, 16, 903-907.	7.9	529
2	APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain, 2006, 129, 2977-2983.	7.6	337
3	Potent amyloidogenicity and pathogenicity of A \hat{l}^2 43. Nature Neuroscience, 2011, 14, 1023-1032.	14.8	245
4	Molecular genetics of Alzheimer's disease: An update. Annals of Medicine, 2008, 40, 562-583.	3.8	196
5	Serum biomarker for progranulinâ€associated frontotemporal lobar degeneration. Annals of Neurology, 2009, 65, 603-609.	5.3	195
6	Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Molecular Psychiatry, 2012, 17, 223-233.	7.9	179
7	Promoter Mutations That Increase Amyloid Precursor-Protein Expression Are Associated with Alzheimer Disease. American Journal of Human Genetics, 2006, 78, 936-946.	6.2	173
8	Genetic variability in <i>progranulin</i> contributes to risk for clinically diagnosed Alzheimer disease. Neurology, 2008, 71, 656-664.	1.1	158
9	<i>Progranulin</i> genetic variability contributes to amyotrophic lateral sclerosis. Neurology, 2008, 71, 253-259.	1.1	148
10	Alzheimer and Parkinson Diagnoses in Progranulin Null Mutation Carriers in an Extended Founder Family. Archives of Neurology, 2007, 64, 1436.	4.5	143
11	Rescue of Progranulin Deficiency Associated with Frontotemporal Lobar Degeneration by Alkalizing Reagents and Inhibition of Vacuolar ATPase. Journal of Neuroscience, 2011, 31, 1885-1894.	3.6	121
12	Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Human Mutation, 2007, 28, 416-416.	2.5	116
13	No association of CSF biomarkers with APOEÂ4, plaque and tangle burden in definite Alzheimer's disease. Brain, 2007, 130, 2320-2326.	7.6	110
14	SORL1 is genetically associated with increased risk for late-onset Alzheimer disease in the Belgian population. Human Mutation, 2008, 29, 769-770.	2.5	98
15	Amyloid precursor protein mutation E682K at the alternative βâ€secretase cleavage βâ€site increases Aβ generation. EMBO Molecular Medicine, 2011, 3, 291-302.	6.9	97
16	TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export. ELife, 2015, 4,	6.0	86
17	Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Molecular Neurodegeneration, 2012, 7, 3.	10.8	77
18	Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer's disease. Brain, 2006, 129, 2984-2991.	7.6	76

#	Article	IF	CITATIONS
19	Genetic association of CR1 with Alzheimer's disease: A tentative disease mechanism. Neurobiology of Aging, 2012, 33, 2949.e5-2949.e12.	3.1	72
20	Alzheimer dementia caused by a novel mutation located in the APP C-terminal intracytosolic fragment. Human Mutation, 2006, 27, 888-896.	2.5	62
21	Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Human Mutation, 2009, 30, 1054-1061.	2.5	58
22	The CALHM1 P86L Polymorphism is a Genetic Modifier of Age at Onset in Alzheimer's Disease: a Meta-Analysis Study. Journal of Alzheimer's Disease, 2010, 22, 247-255.	2.6	54
23	ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. ELife, 2016, 5, .	6.0	54
24	<i>APP</i> and <i>BACE1</i> miRNA genetic variability has no major role in risk for Alzheimer disease. Human Mutation, 2009, 30, 1207-1213.	2.5	52
25	Association study of cholesterol-related genes in Alzheimer's disease. Neurogenetics, 2007, 8, 179-188.	1.4	47
26	A diacidic motif determines unconventional secretion of wild-type and ALS-linked mutant SOD1. Journal of Cell Biology, 2017, 216, 2691-2700.	5.2	42
27	GRASP55 and UPR Control Interleukin- $1\hat{l}^2$ Aggregation and Secretion. Developmental Cell, 2019, 49, 145-155.e4.	7.0	39
28	Follow-Up Study of Susceptibility Loci for Alzheimer's Disease and Onset Age Identified by Genome-Wide Association. Journal of Alzheimer's Disease, 2010, 19, 1169-1175.	2.6	33
29	Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca2+-induced mucin secretion from goblet cells. Journal of Biological Chemistry, 2019, 294, 816-826.	3.4	33
30	The UBQLN1 polymorphism, UBQ-8i, at 9q22 is not associated with Alzheimer's disease with onset before 70 years. Neuroscience Letters, 2006, 392, 72-74.	2.1	30
31	Common variation inGRB-associated Binding Protein 2 (GAB2)and increased risk for Alzheimer dementia. Human Mutation, 2009, 30, E338-E344.	2.5	30
32	No association between <i>CALHM1</i> and risk for Alzheimer dementia in a Belgian population. Human Mutation, 2009, 30, E570-E574.	2.5	25
33	New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. Journal of Cell Biology, 2019, 218, 3861-3879.	5.2	25
34	Role of progranulin as a biomarker for Alzheimer's disease. Biomarkers in Medicine, 2010, 4, 37-50.	1.4	22
35	Contribution of TARDBP to Alzheimer's Disease Genetic Etiology. Journal of Alzheimer's Disease, 2010, 21, 423-430.	2.6	19
36	Reactive oxygen species triggers unconventional secretion of antioxidants and Acb1. Journal of Cell Biology, 2020, 219, .	5.2	19

3

#	Article	IF	CITATIONS
37	KChIP3 coupled to Ca2+ oscillations exerts a tonic brake on baseline mucin release in the colon. ELife, 2018, 7, .	6.0	18
38	Role of Kif15 and its novel mitotic partner KBP in K-fiber dynamics and chromosome alignment. PLoS ONE, 2017, 12, e0174819.	2.5	17
39	Reduced secretion and altered proteolytic processing caused by missense mutations in progranulin. Neurobiology of Aging, 2016, 39, 220.e17-220.e26.	3.1	11
40	DNMBP is genetically associated with Alzheimer dementia in the Belgian population. Neurobiology of Aging, 2009, 30, 2000-2009.	3.1	10
41	Brain-Specific Tryptophan Hydroxylase, TPH2, and 5-HTTLPR are Associated with Frontal Lobe Symptoms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 67-73.	2.6	6
42	Reply. Annals of Neurology, 2010, 68, 119-119.	5.3	1
43	O1-03-01: In-depth molecular genetic analysis of CLU in Alzheimer's disease. , 2010, 6, S73-S74.		0