
William A Ricke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7088597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bisphenol A and Reproductive Health: Update of Experimental and Human Evidence, 2007–2013. Environmental Health Perspectives, 2014, 122, 775-786.	6.0	439
2	Role of the stromal microenvironment in carcinogenesis of the prostate. International Journal of Cancer, 2003, 107, 1-10.	5.1	346
3	Androgens and estrogens in benign prostatic hyperplasia: Past, present and future. Differentiation, 2011, 82, 184-199.	1.9	254
4	Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12182-12187.	7.1	226
5	Prostatic hormonal carcinogenesis is mediated by <i>in situ</i> estrogen production and estrogen receptor alpha signaling. FASEB Journal, 2008, 22, 1512-1520.	0.5	198
6	Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12679-12684.	7.1	182
7	Biomarker discovery in mass spectrometryâ€based urinary proteomics. Proteomics - Clinical Applications, 2016, 10, 358-370.	1.6	110
8	Testosterone and 17β-Estradiol Induce Glandular Prostatic Growth, Bladder Outlet Obstruction, and Voiding Dysfunction in Male Mice. Endocrinology, 2012, 153, 5556-5565.	2.8	86
9	Development of the human prostate. Differentiation, 2018, 103, 24-45.	1.9	83
10	Expression and distribution of PIEZO1 in the mouse urinary tract. American Journal of Physiology - Renal Physiology, 2019, 317, F303-F321.	2.7	83
11	Steroid hormones stimulate human prostate cancer progression and metastasis. International Journal of Cancer, 2006, 118, 2123-2131.	5.1	81
12	Characterization of Fibrillar Collagens and Extracellular Matrix of Glandular Benign Prostatic Hyperplasia Nodules. PLoS ONE, 2014, 9, e109102.	2.5	71
13	Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis, 2012, 33, 1391-1398.	2.8	69
14	Comparison of Picrosirius Red Staining With Second Harmonic Generation Imaging for the Quantification of Clinically Relevant Collagen Fiber Features in Histopathology Samples. Journal of Histochemistry and Cytochemistry, 2016, 64, 519-529.	2.5	68
15	The rising worldwide impact of benign prostatic hyperplasia. BJU International, 2021, 127, 722-728.	2.5	67
16	Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia, 2020, 22, 566-575.	5.3	65
17	Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation, 2007, 75, 871-882.	1.9	58
18	The Heat Shock Protein 90 Inhibitor, (â^')-Epigallocatechin Gallate, Has Anticancer Activity in a Novel Human Prostate Cancer Progression Model. Cancer Prevention Research, 2015, 8, 249-257.	1.5	56

#	Article	IF	CITATIONS
19	Evaluation of voiding assays in mice: impact of genetic strains and sex. American Journal of Physiology - Renal Physiology, 2015, 308, F1369-F1378.	2.7	52
20	Sex steroid receptor expression and localization in benign prostatic hyperplasia varies with tissue compartment. Differentiation, 2013, 85, 140-149.	1.9	51
21	Microfluidic Multiculture Assay to Analyze Biomolecular Signaling in Angiogenesis. Analytical Chemistry, 2015, 87, 3239-3246.	6.5	50
22	Targeting phenotypic heterogeneity in benign prostatic hyperplasia. Differentiation, 2017, 96, 49-61.	1.9	48
23	Estrogen Receptor-α is a Key Mediator and Therapeutic Target for Bladder Complications of Benign Prostatic Hyperplasia. Journal of Urology, 2015, 193, 722-729.	0.4	45
24	Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reproductive Toxicology, 2020, 98, 29-60.	2.9	42
25	Benign Prostatic Hyperplasia and Lower Urinary Tract Symptoms: What Is the Role and Significance of Inflammation?. Current Urology Reports, 2019, 20, 54.	2.2	40
26	Expression Microarray Meta-Analysis Identifies Genes Associated with Ras/MAPK and Related Pathways in Progression of Muscle-Invasive Bladder Transition Cell Carcinoma. PLoS ONE, 2013, 8, e55414.	2.5	39
27	Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. American Journal of Physiology - Renal Physiology, 2018, 315, F1067-F1080.	2.7	37
28	Influence of animal husbandry practices on void spot assay outcomes in C57BL/6J male mice. Neurourology and Urodynamics, 2016, 35, 192-198.	1.5	35
29	Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro. Reproductive Toxicology, 2016, 62, 71-76.	2.9	34
30	In-Depth Characterization and Validation of Human Urine Metabolomes Reveal Novel Metabolic Signatures of Lower Urinary Tract Symptoms. Scientific Reports, 2016, 6, 30869.	3.3	31
31	<i>In Utero</i> and Lactational TCDD Exposure Increases Susceptibility to Lower Urinary Tract Dysfunction in Adulthood. Toxicological Sciences, 2016, 150, 429-440.	3.1	27
32	Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer. Human Pathology, 2019, 89, 99-108.	2.0	25
33	Finasteride treatment alters tissue specific androgen receptor expression in prostate tissues. Prostate, 2014, 74, 923-932.	2.3	24
34	Integration of the ImageJ Ecosystem in KNIME Analytics Platform. Frontiers in Computer Science, 2020, 2, .	2.8	24
35	Prostate Transition Zone Fibrosis is Associated with Clinical Progression in the MTOPS Study. Journal of Urology, 2019, 202, 1240-1247.	0.4	24
36	Steroidogenic Factor 1 Promotes Aggressive Growth of Castration-Resistant Prostate Cancer Cells by Stimulating Steroid Synthesis and Cell Proliferation. Endocrinology, 2014, 155, 358-369.	2.8	23

#	Article	IF	CITATIONS
37	RNA-binding protein DDX3 mediates posttranscriptional regulation of androgen receptor: A mechanism of castration resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28092-28101.	7.1	20
38	Prostate enlargement and altered urinary function are part of the aging process. Aging, 2019, 11, 2653-2669.	3.1	20
39	Endocrine disruptor bisphenol A is implicated in urinary voiding dysfunction in male mice. American Journal of Physiology - Renal Physiology, 2018, 315, F1208-F1216.	2.7	19
40	Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate, 2020, 80, 731-741.	2.3	19
41	Estrogen receptor 1 expression and methylation of Esr1 promoter in mouse fetal prostate mesenchymal cells induced by gestational exposure to bisphenol A or ethinylestradiol. Environmental Epigenetics, 2019, 5, dvz012.	1.8	18
42	<scp>Coâ€Occurrence</scp> of Lower Urinary Tract Symptoms and Frailty among <scp>Communityâ€Dwelling</scp> Older Men. Journal of the American Geriatrics Society, 2020, 68, 2805-2813.	2.6	18
43	Impact of a folic acid-enriched diet on urinary tract function in mice treated with testosterone and estradiol. American Journal of Physiology - Renal Physiology, 2015, 308, F1431-F1443.	2.7	17
44	Interactive Effects of Perinatal BPA or DES and Adult Testosterone and Estradiol Exposure on Adult Urethral Obstruction and Bladder, Kidney, and Prostate Pathology in Male Mice. International Journal of Molecular Sciences, 2020, 21, 3902.	4.1	17
45	Fetal bisphenol A and ethinylestradiol exposure alters male rat urogenital tract morphology at birth: Confirmation of prior low-dose findings in CLARITY-BPA. Reproductive Toxicology, 2020, 91, 131-141.	2.9	16
46	Estrogens and Male Lower Urinary Tract Dysfunction. Current Urology Reports, 2015, 16, 61.	2.2	14
47	Expression and Localization of DDX3 in Prostate Cancer Progression and Metastasis. American Journal of Pathology, 2019, 189, 1256-1267.	3.8	14
48	Prostate cancer xenografts and hormone induced prostate carcinogenesis. Differentiation, 2017, 97, 23-32.	1.9	13
49	Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: functional assessment. American Journal of Physiology - Renal Physiology, 2019, 317, F996-F1009.	2.7	13
50	Quantitation of Protein Expression and Co-localization Using Multiplexed Immuno-histochemical Staining and Multispectral Imaging. Journal of Visualized Experiments, 2016, , .	0.3	12
51	Renal Capsule Xenografting and Subcutaneous Pellet Implantation for the Evaluation of Prostate Carcinogenesis and Benign Prostatic Hyperplasia. Journal of Visualized Experiments, 2013, , .	0.3	10
52	Expression and colocalization of β-catenin and lymphoid enhancing factor-1 in prostate cancer progression. Human Pathology, 2016, 51, 124-133.	2.0	10
53	Quantitative proteomic analysis of a genetically induced prostate inflammation mouse model via custom 4-plex DiLeu isobaric labeling. American Journal of Physiology - Renal Physiology, 2019, 316, F1236-F1243.	2.7	10
54	Modeling human prostate cancer progression in vitro. Carcinogenesis, 2019, 40, 893-902.	2.8	10

#	Article	IF	CITATIONS
55	Urinary Amine Metabolomics Characterization with Custom 12-Plex Isobaric DiLeu Labeling. Journal of the American Society for Mass Spectrometry, 2020, 31, 1854-1860.	2.8	10
56	Beta-catenin is elevated in human benign prostatic hyperplasia specimens compared to histologically normal prostate tissue. American Journal of Clinical and Experimental Urology, 2014, 2, 313-22.	0.4	10
57	Assessment of Frailty and Association With Progression of Benign Prostatic Hyperplasia Symptoms and Serious Adverse Events Among Men Using Drug Therapy. JAMA Network Open, 2021, 4, e2134427.	5.9	10
58	Inflammation, Voiding and Benign Prostatic Hyperplasia Progression. Journal of Urology, 2019, 201, 868-870.	0.4	9
59	Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. International Journal of Molecular Sciences, 2021, 22, 12461.	4.1	9
60	SIGIRR/TIR8, an important regulator of TLR4 and IL-1R–mediated NF-κB activation, predicts biochemical recurrence after prostatectomy in low-grade prostate carcinomas. Human Pathology, 2015, 46, 1744-1751.	2.0	8
61	Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 14747-14760.	3.4	8
62	and lactational 2,3,7,8-tetrachlorodibenzodioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol. American Journal of Clinical and Experimental Urology, 2020, 8, 59-72.	0.4	8
63	Developmental, Cellular and Molecular Biology of Benign Prostatic Hyperplasia. Differentiation, 2011, 82, 165-167.	1.9	7
64	LC/LC–MS/MS of an innovative prostate human epithelial cancer (PHEC) in vitro model system. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 893-894, 34-42.	2.3	7
65	Incidence of androgen receptor and androgen receptor variant 7 coexpression in prostate cancer. Prostate, 2019, 79, 1811-1822.	2.3	7
66	A multi-omic investigation of male lower urinary tract symptoms: Potential role for JC virus. PLoS ONE, 2021, 16, e0246266.	2.5	7
67	CD147 expression predicts biochemical recurrence after prostatectomy independent of histologic and pathologic features. BMC Cancer, 2015, 15, 549.	2.6	6
68	Comprehensive urinary metabolomic characterization of a genetically induced mouse model of prostatic inflammation. International Journal of Mass Spectrometry, 2018, 434, 185-192.	1.5	6
69	Expression, Localization, and Function of the Nucleolar Protein BOP1 in Prostate Cancer Progression. American Journal of Pathology, 2021, 191, 168-179.	3.8	6
70	Bisphenol-A analogs induce lower urinary tract dysfunction in male mice. Biochemical Pharmacology, 2022, 197, 114889.	4.4	6
71	Spatiotemporal Proteomics Reveals the Molecular Consequences of Hormone Treatment in a Mouse Model of Lower Urinary Tract Dysfunction. Journal of Proteome Research, 2020, 19, 1375-1382.	3.7	5
72	A mechanism linking perinatal 2,3,7,8 tetrachlorodibenzo-p-dioxin exposure to lower urinary tract dysfunction in adulthood. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	4

#	Article	IF	CITATIONS
73	Void sorcerer: an open source, open access framework for mouse uroflowmetry. American Journal of Clinical and Experimental Urology, 2019, 7, 170-177.	0.4	4
74	Insight and Resources From a Study of the "Impact of Sex, Androgens, and Prostate Size on C57BL/6J Mouse Urinary Physiology. Toxicologic Pathology, 2019, 47, 1038-1042.	1.8	3
75	Synthesis and biological evaluation of FICZ analogues as agonists of aryl hydrocarbon receptor. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126959.	2.2	3
76	Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: urethral histology. American Journal of Physiology - Renal Physiology, 2020, 318, F617-F627.	2.7	3
77	A NEW approach for characterizing mouse urinary pathophysiologies. Physiological Reports, 2021, 9, e14964.	1.7	3
78	Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Analytical and Bioanalytical Chemistry, 2022, 414, 5461-5472.	3.7	3
79	PII-04 ESTROGEN RECEPTOR-ALPHA IS A KEY MEDIATOR AND THERAPEUTIC TARGET FOR BLADDER COMPLICATIONS OF BENIGN PROSTATIC HYPERPLASIA. Journal of Urology, 2014, 191, .	0.4	2
80	Ultrasonography of the Adult Male Urinary Tract for Urinary Functional Testing. Journal of Visualized Experiments, 2019, , .	0.3	2
81	Targeting a fibrotic bottleneck may provide an opening in the treatment of LUTS. American Journal of Physiology - Renal Physiology, 2019, 316, F1091-F1093.	2.7	2
82	MRI-based method for lower urinary tract dysfunction in adult male mice. American Journal of Clinical and Experimental Urology, 2019, 7, 153-158.	0.4	2
83	Prostate Structure. , 2018, , 315-324.		1
84	Effect of Metabolic Syndrome on Anatomy and Function of the Lower Urinary Tract Assessed on MRI. Urology, 2022, 159, 176-181.	1.0	1
85	Hormonal Carcinogenesis: The Role of Estrogens. , 2017, , 307-322.		0
86	Association of Frailty Index with Clinical BPH Progression and Serious Adverse Events: the MTOPS Trial. Innovation in Aging, 2021, 5, 814-814.	0.1	0