SimÃ³n Nm Méndez-Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087996/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nature Communications, 2022, 13, 543.	12.8	25
2	Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Frontiers in Oncology, 2022, 12, 840044.	2.8	5
3	Stem cells "aclymatise―to regenerate the blood system. EMBO Journal, 2022, 41, e110942.	7.8	2
4	Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. Journal of Clinical Investigation, 2022, 132, .	8.2	28
5	A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell, 2022, 29, 528-544.e9.	11.1	19
6	The EHA Research Roadmap: Hematopoietic Stem Cells and Allotransplantation. HemaSphere, 2022, 6, e0714.	2.7	1
7	The bone marrow niche regulates redox and energy balance in MLL::AF9 leukemia stem cells. Leukemia, 2022, 36, 1969-1979.	7.2	5
8	RIG-Ing out BMSCs for hematopoietic recovery after transplantation. Blood, 2022, 139, 3107-3109.	1.4	0
9	Multicolor Immunofluorescence Staining of Paraffin-Embedded Human Bone Marrow Sections. Methods in Molecular Biology, 2021, 2308, 119-126.	0.9	1
10	Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death and Disease, 2021, 12, 729.	6.3	8
11	Cellular Heterogeneity of Mesenchymal Stem/Stromal Cells in the Bone Marrow. Frontiers in Cell and Developmental Biology, 2021, 9, 689366.	3.7	31
12	Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nature Communications, 2021, 12, 608.	12.8	39
13	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	2.7	1
14	Microenvironmental contributions to hematopoietic stem cell aging. Haematologica, 2020, 105, 38-46.	3.5	94
15	Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metabolism, 2020, 32, 829-843.e9.	16.2	122
16	Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2020, 10, 1225.	2.8	14
17	Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Annals of the Rheumatic Diseases, 2020, 79, 1625-1634.	0.9	48
18	Sox17 Controls Emergence and Remodeling of Nestin-Expressing Coronary Vessels. Circulation Research, 2020, 127, e252-e270.	4.5	19

#	Article	IF	CITATIONS
19	The Autonomic Nervous System Pulls the Strings to Coordinate Circadian HSC Functions. Frontiers in Immunology, 2020, 11, 956.	4.8	10
20	Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 2020, 20, 285-298.	28.4	270
21	Neuronal regulation of bone marrow stem cell niches. F1000Research, 2020, 9, 614.	1.6	14
22	Bone Nature and Blood Nurture. , 2020, , 1-8.		0
23	HSCs revive their niche after transplantation. Blood, 2020, 136, 2597-2598.	1.4	0
24	Mesenchymal Stem Cell Aging in the Bone Marrow. , 2020, , 35-42.		0
25	Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell, 2019, 25, 407-418.e6.	11.1	202
26	Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nature Cell Biology, 2019, 21, 1309-1320.	10.3	88
27	1008 - CHANGING NEIGHBOURS: BONE MARROW REMODELLING DURING AGING AND AGE-RELATED MYELOPROLIFERATIVE DISORDERS. Experimental Hematology, 2019, 76, S26.	0.4	0
28	Updates on the hematologic tumor microenvironment and its therapeutic targeting. Haematologica, 2019, 104, 1928-1934.	3.5	42
29	Vascular Interstitial Cells in Retinal Arteriolar Annuli Are Altered During Hypertension. , 2019, 60, 473.		3
30	Molecular interactome between HSCs and their niches. Blood, 2019, 134, 1197-1198.	1.4	8
31	The sympathomimetic agonist mirabegron did not lower <i>JAK2</i> -V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14. Haematologica, 2019, 104, 710-716.	3.5	29
32	Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood, 2019, 133, 224-236.	1.4	69
33	Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nature Communications, 2018, 9, 3839.	12.8	51
34	Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell, 2018, 23, 572-585.e7.	11.1	86
35	Niche Heterogeneity Impacts Evolution of Myeloproliferative Neoplasms Driven By the Same Oncogenic Pathway. Blood, 2018, 132, 98-98.	1.4	2
36	Aging of Bone Marrow Microenvironment Promotes Myeloid Bias of Hematopoietic Progenitors and Is a Target in Age-Related Myeloproliferative Neoplasms. Blood, 2018, 132, 3842-3842.	1.4	2

Simón Nm Méndez-Ferrer

#	Article	IF	CITATIONS
37	Bitter Taste Receptors System Is Expressed and Functional in Both HSCs and Leukemic Cells. Blood, 2018, 132, 2560-2560.	1.4	0
38	The evolving view of the hematopoietic stem cell niche. Experimental Hematology, 2017, 50, 22-26.	0.4	60
39	Myeloid malignancies and the microenvironment. Blood, 2017, 129, 811-822.	1.4	126
40	Human and mouse leukocytes: different clockwork. Blood, 2017, 130, 1960-1961.	1.4	3
41	Tâ€ALL: several homes rather than homeless?. Immunology and Cell Biology, 2017, 95, 1-2.	2.3	2
42	The hematopoietic stem-cell niche in health and leukemia. Cellular and Molecular Life Sciences, 2017, 74, 579-590.	5.4	81
43	Leukemic Stem Cells Co-Opt Normal Bone Marrow Niches As a Source of Energy and Antioxidant Defence. Blood, 2017, 130, 94-94.	1.4	3
44	Role of VHL, HIF1A and SDH on the expression of miR-210: Implications for tumoral pseudo-hypoxic fate. Oncotarget, 2017, 8, 6700-6717.	1.8	17
45	Nestin+ cells direct inflammatory cell migration in atherosclerosis. Nature Communications, 2016, 7, 12706.	12.8	23
46	Under Pressure: When a Transformed Environment Pushes Cells to Malignancy. Cell Stem Cell, 2016, 19, 559-560.	11.1	0
47	Regulation of hematopoietic progenitors by estrogens as a basis for new antileukemic strategies. Molecular and Cellular Oncology, 2016, 3, e1009728.	0.7	12
48	A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics. Molecular and Cellular Proteomics, 2016, 15, 1740-1760.	3.8	86
49	Effects of the Sympathicomimetic Agonist Mirabegron on Disease Course, Mutant Allele Burden, Marrow Fibrosis, and Nestin Positive Stem Cell Niche in Patients with JAK2-Mutated Myeloproliferative Neoplasms. a Prospective Multicenter Phase II Trial SAKK 33/14. Blood, 2016, 128, 3108-3108.	1.4	4
50	Abstract IA23: Leukemia development and the microenvironment. , 2016, , .		0
51	BMSCs and hematopoiesis. Immunology Letters, 2015, 168, 129-135.	2.5	46
52	Convert and Conquer: The Strategy of Chronic Myelogenous Leukemic Cells. Cancer Cell, 2015, 27, 611-613.	16.8	7
53	Bone marrow stem cells: current and emerging concepts. Annals of the New York Academy of Sciences, 2015, 1335, 32-44.	3.8	75
54	Distinct Bone Marrow Blood Vessels Differentially Regulate Normal and Malignant Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 664-664.	1.4	1

SimÃ³n Nm Méndez-Ferrer

#	Article	IF	CITATIONS
55	Noncellular Niche Influences: Nervous System Mediators, Metabolic Mediators, and Hypoxia/Oxidative Stress. Blood, 2015, 126, SCI-26-SCI-26.	1.4	0
56	Spatiotemporal Regulation of Hematopoietic Stem Cell Niches By Dual Cholinergic Signaling. Blood, 2015, 126, 662-662.	1.4	0
57	The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. ELife, 2014, 3, e03696.	6.0	240
58	Low/Negative Expression of PDGFR-α Identifies the Candidate Primary Mesenchymal Stromal Cells in Adult Human Bone Marrow. Stem Cell Reports, 2014, 3, 965-974.	4.8	97
59	Estrogen Signaling Selectively Induces Apoptosis of Hematopoietic Progenitors and Myeloid Neoplasms without Harming Steady-State Hematopoiesis. Cell Stem Cell, 2014, 15, 791-804.	11.1	96
60	Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 2014, 512, 78-81.	27.8	375
61	Novel neuroendocrine regulation of bone marrow stem cells provides potential combined therapeutic targeting of leukaemic stem cells and their microenvironment. Experimental Hematology, 2014, 42, S9.	0.4	0
62	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.	1.4	39
63	Are MSCs Stem Cells? Demonstration of in Vitro and in Vivo Stem Cell Properties of Highly Enriched linneg/CD45neg/CD271pos/CD140alow/Neg Mesenchymal Stromal Cells from Adult Human Bone Marrow. Blood, 2014, 124, 4374-4374.	1.4	0
64	Tumour stem cells in bone. Nature, 2013, 499, 414-416.	27.8	5
65	Circadian parasympathetic regulation of hematopoietic stem cell traffic. Experimental Hematology, 2013, 41, S14.	0.4	1
66	Self-Renewing Human Bone Marrow Mesenspheres Promote Hematopoietic Stem Cell Expansion. Cell Reports, 2013, 3, 1714-1724.	6.4	128
67	Autonomic regulation of hematopoiesis and cancer. Haematologica, 2013, 98, 1663-1666.	3.5	22
68	Mitochondria underlie different metabolism of hematopoietic stem and progenitor cells. Haematologica, 2013, 98, 993-995.	3.5	16
69	Primary Linneg/CD45neg/CD271pos/PDGFRαlow/Neg Stroma Stem Cells In Adult Human Bone Marrow Show a Distinct Molecular Signature and Potent Hematopoiesis-Supporting Function. Blood, 2013, 122, 3699-3699.	1.4	17
70	CHAPTER 16. Carotid Body Transplants as a Therapy for Parkinson's Disease. RSC Drug Discovery Series, 2013, , 363-375.	0.3	0
71	Sympathetic Neuropathy Of The Hematopoietic Stem Cell Niche Is Essential For Myeloproliferative Neoplasms. Blood, 2013, 122, 268-268.	1.4	0
72	Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood, 2012, 119, 3962-3965.	1.4	86

#	Article	IF	CITATIONS
73	Intercapillary bridging cells: Immunocytochemical characteristics of cells that connect blood vessels in the retina. Experimental Eye Research, 2012, 98, 79-87.	2.6	25
74	Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia, 2011, 25, 1095-1102.	7.2	26
75	Stem Cell Interactions in a Bone Marrow Niche. Current Osteoporosis Reports, 2011, 9, 210-218.	3.6	49
76	Bone Marrow Mesenchymal Stem and Progenitor Cells Induce Monocyte Emigration in Response to Circulating Toll-like Receptor Ligands. Immunity, 2011, 34, 590-601.	14.3	425
77	Diabetes Impairs Hematopoietic Stem Cell Mobilization by Altering Niche Function. Science Translational Medicine, 2011, 3, 104ra101.	12.4	254
78	Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271.	8.5	732
79	Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466, 829-834.	27.8	2,935
80	Cooperation of β ₂ ―and β ₃ â€adrenergic receptors in hematopoietic progenitor cell mobilization. Annals of the New York Academy of Sciences, 2010, 1192, 139-144.	3.8	163
81	Cαs Uncouples Hematopoietic Stem Cell Homing and Mobilization. Cell Stem Cell, 2009, 4, 379-380.	11.1	9
82	Circadian rhythms influence hematopoietic stem cells. Current Opinion in Hematology, 2009, 16, 235-242.	2.5	114
83	Coordinated Regulation of Hematopoietic and Mesenchymal Stem Cells in a Bone Marrow Niche Blood, 2009, 114, 2-2.	1.4	6
84	Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008, 452, 442-447.	27.8	1,103
85	Granulocyte Colony-Stimulating Factor (G-CSF) Stimulates Sympathetic Nervous System Activity in the Bone Marrow. Blood, 2008, 112, 2419-2419.	1.4	1
86	Mesenchymal Stem Cells, Regulated by the Sympathetic Nervous System, Form the Hematopoietic Stem Cell Niche. Blood, 2008, 112, 4-4.	1.4	5
87	Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 825-831.	1.9	88
88	Hematopoietic Stem Cell Trafficking. Annals of the New York Academy of Sciences, 2007, 1116, 392-413.	3.8	68
89	Circadian Traffic of Hematopoietic Stem Cells Is Orchestrated by the Molecular Clock and Mediated by β3 Adrenergic Signals from the Sympathetic Nervous System Blood, 2007, 110, 219-219.	1.4	0
90	Resident progenitors and bone marrow stem cells in myocardial renewal and repair. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S83-S89.	3.3	22

#	Article	IF	CITATIONS
91	Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S8-S13.	3.3	150
92	Selective Glial Cell Line-Derived Neurotrophic Factor Production in Adult Dopaminergic Carotid Body Cells In Situ and after Intrastriatal Transplantation. Journal of Neuroscience, 2005, 25, 4091-4098.	3.6	62
93	Autotransplantation of Human Carotid Body Cell Aggregates for Treatment of Parkinson's Disease. Neurosurgery, 2003, 53, 321-330.	1.1	99
94	Trophic Restoration of the Nigrostriatal Dopaminergic Pathway in Long-Term Carotid Body-Grafted Parkinsonian Rats. Journal of Neuroscience, 2003, 23, 141-148.	3.6	82
95	Dopaminergic cells of the carotid body: physiological significance and possible therapeutic applications in Parkinson's disease. Brain Research Bulletin, 2002, 57, 847-853.	3.0	26
96	Identification of a new water channel (Rp-MIP) in the Malpighian tubules of the insect Rhodnius prolixus. Pflugers Archiv European Journal of Physiology, 2001, 442, 27-34.	2.8	52