
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance of sample dilution in the evaluation of the antibody response after SARS-CoV-2 vaccination. Journal of Infection, 2022, 84, 94-118.	3.3	3
2	Nucleocapsid serum antigen determination in SARS-CoV-2 infected patients using the single molecule array technology and prediction of disease severity. Journal of Infection, 2022, 84, e4-e6.	3.3	4
3	Spike vs. nucleocapsid serum antigens for COVID-19 diagnosis and severity assessment. Clinical Chemistry and Laboratory Medicine, 2022, 60, e97-e100.	2.3	5
4	Interferences with cardiac biomarker assays: understanding the clinical impact. European Heart Journal, 2022, 43, 2286-2288.	2.2	12
5	Identification of SARS-CoV-2 Neutralizing Antibody with Pseudotyped Virus-based Test on HEK-293T hACE2 Cells. Bio-protocol, 2022, 12, e4377.	0.4	7
6	Interferences in immunoassays: review and practical algorithm. Clinical Chemistry and Laboratory Medicine, 2022, 60, 808-820.	2.3	34
7	Assessment of the humoral response in Omicron breakthrough cases in healthcare workers who received the BNT162b2 booster. Clinical Chemistry and Laboratory Medicine, 2022, 60, e153-e156.	2.3	7
8	Analytical Sensitivity of Six SARS-CoV-2 Rapid Antigen Tests for Omicron versus Delta Variant. Viruses, 2022, 14, 654.	3.3	44
9	Two-site evaluation of the Roche Elecsys Vitamin D total III assay. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1598-1606.	2.3	6
10	Lung Transplant Recipients Immunogenicity after Heterologous ChAdOx1 nCoV-19—BNT162b2 mRNA Vaccination. Viruses, 2022, 14, 1470.	3.3	5
11	Analytical and clinical validation of an ELISA for specific SARSâ€CoVâ€2 IgG, IgA, and IgM antibodies. Journal of Medical Virology, 2021, 93, 803-811.	5.0	77
12	Clinical performance of three fully automated antiâ€SARS oVâ€2 immunoassays targeting the nucleocapsid or spike proteins. Journal of Medical Virology, 2021, 93, 2262-2269.	5.0	20
13	Biological variation and analytical goals of four thyroid function biomarkers in healthy European volunteers. Clinical Endocrinology, 2021, 94, 845-850.	2.4	5
14	Head-to-Head Comparison of Rapid and Automated Antigen Detection Tests for the Diagnosis of SARS-CoV-2 Infection. Journal of Clinical Medicine, 2021, 10, 265.	2.4	77
15	Antibody titres decline 3-month post-vaccination with BNT162b2. Emerging Microbes and Infections, 2021, 10, 1495-1498.	6.5	141
16	Influence of C-reactive protein on thrombin generation assay. Clinical Chemistry and Laboratory Medicine, 2021, 59, e301-e305.	2.3	1
17	Clinical performance of the Panbio assay for the detection of SARSâ€CoVâ€2 IgM and IgG in COVIDâ€19 patients. Journal of Medical Virology, 2021, 93, 3277-3281.	5.0	7
18	Persistence of Anti-SARS-CoV-2 Antibodies Depends on the Analytical Kit: A Report for Up to 10 Months after Infection. Microorganisms, 2021, 9, 556.	3.6	52

#	Article	IF	CITATIONS
19	Evaluations of SARS-CoV-2 Serological Assay Performance Need Inclusion of Long-Term Samples. Journal of Clinical Microbiology, 2021, 59, .	3.9	6
20	Evaluation of a Capillary Electrophoresis System for the Separation of Proteins. journal of applied laboratory medicine, The, 2021, 6, 1611-1617.	1.3	2
21	Confounding Factors Influencing the Kinetics and Magnitude of Serological Response Following Administration of BNT162b2. Microorganisms, 2021, 9, 1340.	3.6	33
22	Hypotheses behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination. Thrombosis Research, 2021, 203, 163-171.	1.7	52
23	Neutralizing Antibodies in COVID-19 Patients and Vaccine Recipients after Two Doses of BNT162b2. Viruses, 2021, 13, 1364.	3.3	72
24	Fatal exacerbation of ChadOx1-nCoV-19-induced thrombotic thrombocytopenia syndrome after initial successful therapy with intravenous immunoglobulins - a rational for monitoring immunoglobulin G levels. Haematologica, 2021, 106, 3249-3252.	3.5	9
25	Reply to Schulte-Pelkum, J. Comment on "Favresse et al. Persistence of Anti-SARS-CoV-2 Antibodies Depends on the Analytical Kit: A Report for Up to 10 Months after Infection. Microorganisms 2021, 9, 556― Microorganisms, 2021, 9, 1849.	3.6	3
26	Efficient Maternal to Neonate Transfer of Neutralizing Antibodies after SARS-CoV-2 Vaccination with BNT162b2: A Case-Report and Discussion of the Literature. Vaccines, 2021, 9, 907.	4.4	9
27	NETosis and the Immune System in COVID-19: Mechanisms and Potential Treatments. Frontiers in Pharmacology, 2021, 12, 708302.	3.5	37
28	Early antibody response in health-care professionals after two doses of SARS-CoV-2 mRNA vaccine (BNT162b2). Clinical Microbiology and Infection, 2021, 27, 1351.e5-1351.e7.	6.0	54
29	Waning of IgG, Total and Neutralizing Antibodies 6 Months Post-Vaccination with BNT162b2 in Healthcare Workers. Vaccines, 2021, 9, 1092.	4.4	96
30	Post-SARS-CoV-2 vaccination specific antibody decrease — Thresholds for determining seroprevalence and seroneutralization differ. Journal of Infection, 2021, 83, e4-e5.	3.3	20
31	The underestimated issue of non-reproducible cardiac troponin I and T results: case series and systematic review of the literature. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1201-1211.	2.3	21
32	Non-reproducible cardiac troponin results occurring with a particular reagent lot. Clinical Chemistry and Laboratory Medicine, 2021, 59, e9-e12.	2.3	9
33	An original multiplex method to assess five different SARS-CoV-2 antibodies. Clinical Chemistry and Laboratory Medicine, 2021, 59, 971-978.	2.3	15
34	Long-term kinetics of anti-SARS-CoV-2 antibodies in a cohort of 197 hospitalized and non-hospitalized COVID-19 patients. Clinical Chemistry and Laboratory Medicine, 2021, 59, e179-e183.	2.3	15
35	Usefulness of a Non-Streptavidin Bead Technology to Overcome Biotin Interference: Proof of Principle with 25-OH Vitamin D, TSH, and FT4. journal of applied laboratory medicine, The, 2021, 6, 1072-1077.	1.3	1
36	High-resolution capillary electrophoresis for the determination of carbamylated albumin. Clinical Chemistry and Laboratory Medicine, 2021, .	2.3	2

#	Article	IF	CITATIONS
37	Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects. Viruses, 2021, 13, 2329.	3.3	13
38	Fatal exacerbation of ChadOx1-nCoV-19-induced thrombotic thrombocytopenia syndrome after initial successful therapy with intravenous immunoglobulins - a rational for monitoring immunoglobulin G levels. Haematologica, 2021, , .	3.5	1
39	Macro vitamin B12: an underestimated threat. Clinical Chemistry and Laboratory Medicine, 2020, 58, 408-415.	2.3	13
40	Utility of the XNâ€1000 research mode for leukocytes counting in ascitic and pleural fluids. International Journal of Laboratory Hematology, 2020, 42, e92-e95.	1.3	4
41	Evaluation of a hereditary spherocytosis screening algorithm by automated blood count using reticulocytes and erythrocytic parameters on the Sysmex XNâ€series. International Journal of Laboratory Hematology, 2020, 42, e88-e91.	1.3	6
42	High clinical performance and quantitative assessment of antibody kinetics using a dual recognition assay for the detection of SARS-CoV-2 IgM and IgG antibodies. Clinical Biochemistry, 2020, 86, 23-27.	1.9	22
43	An Original ELISA-Based Multiplex Method for the Simultaneous Detection of 5 SARS-CoV-2 IgG Antibodies Directed against Different Antigens. Journal of Clinical Medicine, 2020, 9, 3752.	2.4	30
44	Clinical Performance of the Elecsys Electrochemiluminescent Immunoassay for the Detection of SARS-CoV-2 Total Antibodies. Clinical Chemistry, 2020, 66, 1104-1106.	3.2	103
45	A Challenging Case of Falsely Elevated Free Thyroid Hormones. journal of applied laboratory medicine, The, 2020, 5, 406-411.	1.3	1
46	Twoâ€site evaluation of a new workflow for the detection of malignant cells on the Sysmex XNâ€1000 body fluid analyzer. International Journal of Laboratory Hematology, 2020, 42, 544-551.	1.3	6
47	Unexpected kinetics of antiâ€5ARS oVâ€2 total antibodies in two patients with chronic lymphocytic leukemia. British Journal of Haematology, 2020, 190, e187-e189.	2.5	11
48	Neutralization of biotin interference: preliminary evaluation of the VeraTest Biotinâ,,¢, VeraPrep Biotinâ,,¢ and BioT-Filter [®] . Clinical Chemistry and Laboratory Medicine, 2020, 58, e130-e133.	2.3	9
49	Biotin interferences: Have we neglected the impact on serological markers?. Clinica Chimica Acta, 2020, 503, 107-112.	1.1	10
50	Biotin interference: evaluation of a new generation of electrochemiluminescent immunoassays for high-sensitive troponin T and thyroid-stimulating hormone testing. Clinical Chemistry and Laboratory Medicine, 2020, 58, 2037-2045.	2.3	18
51	Response of anti-SARS-CoV-2 total antibodies to nucleocapsid antigen in COVID-19 patients: a longitudinal study. Clinical Chemistry and Laboratory Medicine, 2020, 58, e193-e196.	2.3	18
52	Intentional acetylsalicylic acid acute intoxication and its clinical management. Clinical Case Reports (discontinued), 2019, 7, 1697-1701.	0.5	2
53	Comment on "High doses of biotin can interfere with immunoassays that use biotin-strept(avidin) technologies: Implications for individuals with biotin-responsive inherited metabolic disorders― Molecular Genetics and Metabolism Reports, 2019, 21, 100506.	1.1	3
54	Evaluation of the Fully Automated HemosIL Acustar ADAMTS13 Activity Assay. Thrombosis and Haemostasis, 2018, 118, 942-944.	3.4	23

#	Article	IF	CITATIONS
55	A reminder of the place of morphology and the Hâ€score in the diagnosis of hemophagocytic lymphohistiocytosis (<scp>HLH</scp>). Clinical Case Reports (discontinued), 2018, 6, 527-528.	0.5	2
56	Anti-streptavidin antibodies mimicking heterophilic antibodies in thyroid function tests. Clinical Chemistry and Laboratory Medicine, 2018, 56, e160-e163.	2.3	16
57	Assessment of in vitro stability: a call for harmonization across studies. Clinical Chemistry and Laboratory Medicine, 2018, 56, e121-e124.	2.3	7
58	Preanalytics of ammonia: stability, transport and temperature of centrifugation. Clinical Chemistry and Laboratory Medicine, 2018, 56, e65-e68.	2.3	6
59	D-dimer: Preanalytical, analytical, postanalytical variables, and clinical applications. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 548-577.	6.1	116
60	Interferences With Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocrine Reviews, 2018, 39, 830-850.	20.1	164
61	Evaluation of the DOAC-Stop® Procedure to Overcome the Effect of DOACs on Several Thrombophilia Screening Tests. TH Open, 2018, 02, e202-e209.	1.4	54
62	Natriuretic peptides: degradation, circulating forms, dosages and new therapeutic approaches. Annales De Biologie Clinique, 2017, 75, 259-267.	0.1	3
63	Tracking Macroprolactin: Use of an Optimized Polyethylene Glycol Precipitation Method More Compatible with the Requirements and Processes of Automated Core Laboratories. journal of applied laboratory medicine, The, 2017, 1, 661-667.	1.3	7