
Timothy M Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7086920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Protein O-GlcNAcylation, a Link between Type 2 Diabetes Mellitus and Inflammatory Disease. Cells, 2022, 11, 705.	4.1	9
2	Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets. Pharmacological Research, 2021, 165, 105467.	7.1	18
3	Revascularisation of type 2 diabetics with coronary artery disease: Insights and therapeutic targeting of O-GlcNAcylation. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 1349-1356.	2.6	9
4	Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clinical Science, 2021, 135, 1563-1590.	4.3	1
5	Investigation of Novel Cavin-1/Suppressor of CytokineÂSignaling 3 (SOCS3) Interactions by Coimmunoprecipitation, Peptide Pull-Down, and Peptide Array Overlay Approaches. Methods in Molecular Biology, 2020, 2169, 105-118.	0.9	2
6	Is there a role for prostanoid-mediated inhibition of IL-6 <i>trans</i> -signalling in the management of pulmonary arterial hypertension?. Biochemical Society Transactions, 2019, 47, 1143-1156.	3.4	8
7	Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Annals of the Rheumatic Diseases, 2019, 78, 929-933.	0.9	70
8	Targeting SOCS Proteins to Control JAK-STAT Signalling in Disease. Trends in Pharmacological Sciences, 2019, 40, 298-308.	8.7	104
9	Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiology Research and Practice, 2019, 2019, 1-15.	1.1	50
10	Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nature Communications, 2018, 9, 168.	12.8	25
11	Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Scientific Reports, 2018, 8, 5276.	3.3	173
12	Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators?. Pharmacological Research, 2018, 128, 88-100.	7.1	35
13	A769662 Inhibits Insulin-Stimulated Akt Activation in Human Macrovascular Endothelial Cells Independent of AMP-Activated Protein Kinase. International Journal of Molecular Sciences, 2018, 19, 3886.	4.1	9
14	Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Molecular and Cellular Endocrinology, 2017, 440, 44-56.	3.2	83
15	Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487. Biochemical Journal, 2016, 473, 4681-4697.	3.7	57
16	Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Science Signaling, 2016, 9, ra109.	3.6	80
17	The future of EPAC-targeted therapies: agonism versus antagonism. Trends in Pharmacological Sciences, 2015, 36, 203-214.	8.7	76
18	Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3) Function and Expression. Cells, 2014, 3, 546-562.	4.1	33

TIMOTHY M PALMER

#	Article	IF	CITATIONS
19	Cavin-1: caveolae-dependent signalling and cardiovascular disease. Biochemical Society Transactions, 2014, 42, 284-288.	3.4	26
20	Extracellular Adenosine Sensing—A Metabolic Cell Death Priming Mechanism Downstream of p53. Molecular Cell, 2013, 50, 394-406.	9.7	46
21	β ₁ -Adrenergic Receptor and Sphingosine-1-Phosphate Receptor 1 (S1PR1) Reciprocal Downregulation Influences Cardiac Hypertrophic Response and Progression to Heart Failure. Circulation, 2013, 128, 1612-1622.	1.6	69
22	Novel control of cAMP-regulated transcription in vascular endothelial cells. Biochemical Society Transactions, 2012, 40, 1-5.	3.4	12
23	Unbiased identification of substrates for the Epac1-inducible E3 ubiquitin ligase component SOCS-3. Biochemical Society Transactions, 2012, 40, 215-218.	3.4	13
24	Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opinion on Investigational Drugs, 2012, 21, 1155-1167.	4.1	121
25	Regulation of the inflammatory response of vascular endothelial cells by EPAC1. British Journal of Pharmacology, 2012, 166, 434-446.	5.4	54
26	Protein kinase A-mediated phosphorylation of RhoA on serine 188 triggers the rapid induction of a neuroendocrine-like phenotype in prostate cancer epithelial cells. Cellular Signalling, 2012, 24, 1504-1514.	3.6	23
27	Exchange Protein Directly Activated by Cyclic AMP-1-Regulated Recruitment of CCAAT/Enhancer-Binding Proteins to the Suppressor of Cytokine Signaling-3 Promoter. Methods in Molecular Biology, 2012, 809, 201-214.	0.9	6
28	Anti-Inflammatory and Immunosuppressive Effects of the A _{2A} Adenosine Receptor. Scientific World Journal, The, 2011, 11, 320-339.	2.1	107
29	Deletion of the distal COOHâ€ŧerminus of the A _{2B} adenosine receptor switches internalization to an arrestin―and clathrinâ€independent pathway and inhibits recycling. British Journal of Pharmacology, 2010, 159, 518-533.	5.4	15
30	Priming of Signal Transducer and Activator of Transcription Proteins for Cytokine-Triggered Polyubiquitylation and Degradation by the A _{2A} Adenosine Receptor. Molecular Pharmacology, 2010, 77, 968-978.	2.3	14
31	Molecular Basis of Protective Anti-Inflammatory Signalling by Cyclic AMP in the Vascular Endothelium. Systems Biology, 2010, , 561-587.	0.1	Ο
32	Activation of Protein Kinase Cα by EPAC1 Is Required for the ERK- and CCAAT/Enhancer-binding Protein β-dependent Induction of the SOCS-3 Gene by Cyclic AMP in COS1 Cells. Journal of Biological Chemistry, 2009, 284, 17391-17403.	3.4	50
33	Selective inhibition of cytokine-activated extracellular signal-regulated kinase by cyclic AMP via Epac1-dependent induction of suppressor of cytokine signalling-3. Cellular Signalling, 2009, 21, 1706-1715.	3.6	44
34	Novel interactions between the 5â€HT transporter, 5â€HT _{1B} receptors and Rho kinase <i>in vivo</i> and in pulmonary fibroblasts. British Journal of Pharmacology, 2008, 155, 606-616.	5.4	38
35	Regulating gene transcription in response to cyclic AMP elevation. Cellular Signalling, 2008, 20, 460-466.	3.6	271
36	Identification of CCAAT/Enhancer-binding Proteins as Exchange Protein Activated by cAMP-activated Transcription Factors That Mediate the Induction of the SOCS-3 Gene. Journal of Biological Chemistry, 2008, 283, 6843-6853.	3.4	72

TIMOTHY M PALMER

#	Article	IF	CITATIONS
37	The New Biology of Adenosine Receptors. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 69, 83-120.	1.3	6
38	Regulated Overexpression of the A 1 -Adenosine Receptor in Mice Results in Adverse but Reversible Changes in Cardiac Morphology and Function. Circulation, 2006, 114, 2240-2250.	1.6	56
39	Exchange Protein Activated by Cyclic AMP (Epac)-Mediated Induction of Suppressor of Cytokine Signaling 3 (SOCS-3) in Vascular Endothelial Cells. Molecular and Cellular Biology, 2006, 26, 6333-6346.	2.3	137
40	Adenosine receptors and the control of endothelial cell function in inflammatory disease. Immunology Letters, 2005, 101, 1-11.	2.5	49
41	Phosphorylation-independent internalisation and desensitisation of the human sphingosine-1-phosphate receptor S1P3. Cellular Signalling, 2005, 17, 997-1009.	3.6	6
42	Specific Inhibition of Nuclear Factor-κB–Dependent Inflammatory Responses by Cell Type-Specific Mechanisms upon A2A Adenosine Receptor Gene Transfer. Molecular Pharmacology, 2004, 66, 1147-1159.	2.3	55
43	Dissecting the regulatory mechanisms controlling inhibitory adenosine receptor signaling. Drug Development Research, 2003, 58, 302-314.	2.9	5
44	Dual Regulation of EDG1/S1P1 Receptor Phosphorylation and Internalization by Protein Kinase C and G-protein-coupled Receptor Kinase 2. Journal of Biological Chemistry, 2002, 277, 5767-5777.	3.4	78
45	Subtype-Specific Regulation of Receptor Internalization and Recycling by the Carboxyl-Terminal Domains of the Human A1and Rat A3Adenosine Receptors:Â Consequences for Agonist-Stimulated Translocation of Arrestin3â€. Biochemistry, 2002, 41, 14748-14761.	2.5	37
46	Removal of the carboxy terminus of the A 2A -adenosine receptor blunts constitutive activity: differential effect on cAMP accumulation and MAP kinase stimulation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 287-298.	3.0	52
47	Identification of Threonine Residues Controlling the Agonist-Dependent Phosphorylation and Desensitization of the Rat A ₃ Adenosine Receptor. Molecular Pharmacology, 2000, 57, 539-545.	2.3	96
48	Subtype-Specific Kinetics of Inhibitory Adenosine Receptor Internalization Are Determined by Sensitivity to Phosphorylation by G Protein-Coupled Receptor Kinases. Molecular Pharmacology, 2000, 57, 546-552.	2.3	55
49	Functional analysis of a human A1adenosine receptor/green fluorescent protein/Gi1α fusion protein following stable expression in CHO cells. FEBS Letters, 1999, 462, 61-65.	2.8	17
50	Stimulation of A2AAdenosine Receptor Phosphorylation by Protein Kinase C Activation:Â Evidence for Regulation by Multiple Protein Kinase C Isoformsâ€. Biochemistry, 1999, 38, 14833-14842.	2.5	19
51	Regulation of A3 Adenosine Receptor Internalisation by Receptor Phosphorylation. Biochemical Society Transactions, 1999, 27, A115-A115.	3.4	1
52	Identification of an A2a Adenosine Receptor Domain Specifically Responsible for Mediating Short-Term Desensitization. Biochemistry, 1997, 36, 832-838.	2.5	61
53	Structure-function analysis of inhibitory adenosine receptor regulation. Neuropharmacology, 1997, 36, 1141-1147.	4.1	44
54	Induction of Multiple Effects on Adenylyl Cyclase Regulation by Chronic Activation of the Human A3Adenosine Receptor. Molecular Pharmacology, 1997, 52, 632-640.	2.3	28

TIMOTHY M PALMER

#	Article	IF	CITATIONS
55	Signalling enzymes: Bursting with potential. Current Biology, 1997, 7, R470-R473.	3.9	11
56	Molecular Basis for Subtype-specific Desensitization of Inhibitory Adenosine Receptors. Journal of Biological Chemistry, 1996, 271, 15272-15278.	3.4	75
57	Agonist-dependent Phosphorylation and Desensitization of the Rat A3 Adenosine Receptor. Journal of Biological Chemistry, 1995, 270, 29607-29613.	3.4	83
58	Adenosine receptors. Neuropharmacology, 1995, 34, 683-694.	4.1	270
59	Differential Interaction with and Regulation of Multiple C-proteins by the Rat A3 Adenosine Receptor. Journal of Biological Chemistry, 1995, 270, 16895-16902.	3.4	116
60	Alterations in G-protein expression, Gi function and stimulatory receptor-mediated regulation of adipocyte adenylyl cyclase in a model of insulin-resistant diabetes with obesity. Cellular Signalling, 1992, 4, 365-377.	3.6	29
61	Determination of C-protein levels, ADP-ribosylation by cholera and pertussis toxins and the regulation of adenylyl cyclase activity in liver plasma membranes from lean and genetically diabetic (db/db). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1991, 1097, 193-204.	3.8	14
62	Guanine nucleotide regulatory proteins in insulin's action and in diabetes. Biochemical Society Transactions, 1989, 17, 627-629.	3.4	15