K N Bower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7086235/publications.pdf Version: 2024-02-01

147 papers	13,648 citations	47006 47 h-index	²⁹¹⁵⁷ 104 g-index
217	217	217	8550
all docs	docs citations	times ranked	citing authors

K N ROWER

#	Article	IF	CITATIONS
1	Evolution of boundary-layer aerosol particles due to in-cloud chemical reactions during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 452.	1.6	6
2	Multi-thermals and high concentrations of secondary ice: a modelling study of convective clouds during the Ice in Clouds Experiment – Dust (ICE-D) campaign. Atmospheric Chemistry and Physics, 2022, 22, 1649-1667.	4.9	1
3	Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210112.	3.4	6
4	<i>î´</i> ¹³ C methane source signatures from tropical wetland and rice field emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200449.	3.4	8
5	Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210192.	3.4	2
6	Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical Cycles, 2022, 36, .	4.9	14
7	The CLoud–Aerosol–Radiation Interaction and Forcing: YearÂ2017 (CLARIFY-2017) measurement campaign. Atmospheric Chemistry and Physics, 2021, 21, 1049-1084.	4.9	57
8	Characterising optical array particle imaging probes: implications for small-ice-crystal observations. Atmospheric Measurement Techniques, 2021, 14, 1917-1939.	3.1	7
9	Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – PartÂ2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign. Atmospheric Chemistry and Physics, 2021, 21, 3235-3254.	4.9	7
10	EUREC ⁴ A. Earth System Science Data, 2021, 13, 4067-4119.	9.9	88
11	Characterizing the Particle Composition and Cloud Condensation Nuclei from Shipping Emission in Western Europe. Environmental Science & amp; Technology, 2020, 54, 15604-15612.	10.0	18
12	Small ice particles at slightly supercooled temperatures in tropical maritime convection. Atmospheric Chemistry and Physics, 2020, 20, 3895-3904.	4.9	14
13	Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 4059-4084.	4.9	21
14	Development of aerosol activation in the double-moment Unified Model and evaluation with CLARIFY measurements. Atmospheric Chemistry and Physics, 2020, 20, 10997-11024.	4.9	7
15	Absorption closure in highly aged biomass burning smoke. Atmospheric Chemistry and Physics, 2020, 20, 11201-11221.	4.9	29
16	A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared. Atmospheric Chemistry and Physics, 2020, 20, 12889-12903.	4.9	9
17	Airborne measurements of fire emission factors for African biomass burning sampled during the MOYA campaign. Atmospheric Chemistry and Physics, 2020, 20, 15443-15459.	4.9	17
18	Aerosol influences on low-level clouds in the West African monsoon. Atmospheric Chemistry and Physics, 2019, 19, 8503-8522.	4.9	19

#	Article	IF	CITATIONS
19	Airborne validation of radiative transfer modelling of ice clouds at millimetre and sub-millimetre wavelengths. Atmospheric Measurement Techniques, 2019, 12, 1599-1617.	3.1	23
20	Radiative Effects of Secondary Ice Enhancement in Coastal Antarctic Clouds. Geophysical Research Letters, 2019, 46, 2312-2321.	4.0	24
21	The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights. Bulletin of the American Meteorological Society, 2018, 99, 83-104.	3.3	62
22	Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D. Atmospheric Chemistry and Physics, 2018, 18, 3817-3838.	4.9	38
23	Atmospheric Iceâ€Nucleating Particles in the Dusty Tropical Atlantic. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2175-2193.	3.3	66
24	In situ measurements of cloud microphysical and aerosol properties during the break-up of stratocumulus cloud layers in cold air outbreaks over the North Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 17191-17206.	4.9	12
25	Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 17225-17257.	4.9	80
26	Numerical simulations of aerosol radiative effects and their impact on clouds and atmospheric dynamics over southern West Africa. Atmospheric Chemistry and Physics, 2018, 18, 9767-9788.	4.9	36
27	A measurement-based verification framework for UK greenhouse gas emissions: an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. Atmospheric Chemistry and Physics, 2018, 18, 11753-11777.	4.9	29
28	Microphysical Properties and Radar Polarimetric Features within a Warm Front. Monthly Weather Review, 2018, 146, 2003-2022.	1.4	7
29	Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland. Journal of Applied Meteorology and Climatology, 2017, 56, 433-453.	1.5	11
30	Measurement of the ¹³ C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.	4.9	52
31	Ice Iollies: An ice particle generated in supercooled conveyor belts. Geophysical Research Letters, 2017, 44, 5222-5230.	4.0	13
32	The Role of Precipitation in Controlling the Transition from Stratocumulus to Cumulus Clouds in a Northern Hemisphere Cold-Air Outbreak. Journals of the Atmospheric Sciences, 2017, 74, 2293-2314.	1.7	74
33	A cautionary tale: A study of a methane enhancement over the North Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7630-7645.	3.3	22
34	In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign. Atmospheric Chemistry and Physics, 2017, 17, 13049-13070.	4.9	26
35	Real-time detection of airborne fluorescent bioparticles in Antarctica. Atmospheric Chemistry and Physics, 2017, 17, 14291-14307.	4.9	22
36	Are the Fenno-Scandinavian Arctic Wetlands a Significant Regional Source of Formic Acid?. Atmosphere, 2017, 8, 112.	2.3	4

#	Article	IF	CITATIONS
37	Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.	4.0	74
38	The Convective Precipitation Experiment (COPE): Investigating the Origins of Heavy Precipitation in the Southwestern United Kingdom. Bulletin of the American Meteorological Society, 2016, 97, 1003-1020.	3.3	40
39	Measurements of δ ¹³ C in CH ₄ and using particle dispersion modeling to characterize sources of Arctic methane within an air mass. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14257-14270.	3.3	22
40	Airborne observations of the microphysical structure of two contrasting cirrus clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,510.	3.3	22
41	Aerosol measurements during COPE: composition, size, and sources of CCN and INPs at the interface between marine and terrestrial influences. Atmospheric Chemistry and Physics, 2016, 16, 11687-11709.	4.9	16
42	Observations of cloud microphysics and ice formation during COPE. Atmospheric Chemistry and Physics, 2016, 16, 799-826.	4.9	55
43	Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign. Atmospheric Chemistry and Physics, 2016, 16, 4945-4966.	4.9	21
44	Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean. Atmospheric Chemistry and Physics, 2016, 16, 13945-13967.	4.9	31
45	Observations of fluorescent aerosol–cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch. Atmospheric Chemistry and Physics, 2016, 16, 2273-2284.	4.9	34
46	Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign. Atmospheric Chemistry and Physics, 2016, 16, 4063-4079.	4.9	24
47	Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14188-14200.	3.3	10
48	The Cirrus Coupled Cloud-Radiation Experiment-II. , 2016, , .		0
49	The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2015, 15, 12953-12969.	4.9	53
50	The importance of Asia as a source of black carbon to the European Arctic during springtime 2013. Atmospheric Chemistry and Physics, 2015, 15, 11537-11555.	4.9	48
51	Observations and comparisons of cloud microphysical properties in spring and summertime Arctic stratocumulus clouds during the ACCACIA campaign. Atmospheric Chemistry and Physics, 2015, 15, 3719-3737.	4.9	33
52	Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project. Bulletin of the American Meteorological Society, 2015, 96, 249-265.	3.3	32
53	Observations of the Origin and Distribution of Ice in Cold, Warm, and Occluded Frontal Systems during the DIAMET Campaign. Monthly Weather Review, 2014, 142, 4230-4255.	1.4	13
54	Atmospheric composition and thermodynamic retrievals from the ARIES airborne TIR-FTS system – Part 2: Validation and results from aircraft campaigns. Atmospheric Measurement Techniques, 2014, 7, 4401-4416.	3.1	18

#	Article	IF	CITATIONS
55	Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.	4.9	39
56	Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front. Monthly Weather Review, 2014, 142, 3100-3125.	1.4	14
57	Microphysical properties of cold frontal rainbandsâ€. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1257-1268.	2.7	41
58	Airborne measurements of HC(O)OH in the European Arctic: A winter – summer comparison. Atmospheric Environment, 2014, 99, 556-567.	4.1	15
59	Can aerosols influence deep tropical convection? Aerosol indirect effects in the <i>Hector</i> island thunderstorm. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 2190-2208.	2.7	13
60	Comparison of in-situ, satellite and ground-based remote sensing retrievals of liquid cloud microphysics during MACLOUD. AIP Conference Proceedings, 2013, , .	0.4	2
61	Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx. Atmospheric Chemistry and Physics, 2013, 13, 191-209.	4.9	50
62	Marine cloud brightening. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 4217-4262.	3.4	125
63	Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling. Atmospheric Chemistry and Physics, 2012, 12, 4963-4985.	4.9	92
64	Aerosol observations and growth rates downwind of the anvil of a deep tropical thunderstorm. Atmospheric Chemistry and Physics, 2012, 12, 6157-6172.	4.9	17
65	Corrigendum to "Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree?" published in Atmos. Chem. Phys., 12, 7251–7267, 2012. Atmospheric Chemistry and Physics, 2012, 12, 7429-7429.	4.9	0
66	Aircraft measurements of wave clouds. Atmospheric Chemistry and Physics, 2012, 12, 9881-9892.	4.9	8
67	In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf. Atmospheric Chemistry and Physics, 2012, 12, 11275-11294.	4.9	39
68	Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions. Atmospheric Chemistry and Physics, 2012, 12, 6609-6628.	4.9	29
69	Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree?. Atmospheric Chemistry and Physics, 2012, 12, 7251-7267.	4.9	24
70	A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus. Atmospheric Chemistry and Physics, 2012, 12, 8157-8175.	4.9	16
71	Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & Technology, 2012, 46, 13093-13102.	10.0	109
72	Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements. Atmospheric Chemistry and Physics, 2011, 11, 9549-9561.	4.9	58

#	Article	IF	CITATIONS
73	South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5237-5262.	4.9	119
74	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmospheric Chemistry and Physics, 2011, 11, 12673-12696.	4.9	240
75	Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmospheric Chemistry and Physics, 2011, 11, 257-273.	4.9	119
76	The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations. Atmospheric Chemistry and Physics, 2011, 11, 627-654.	4.9	272
77	Source attribution of Bornean air masses by back trajectory analysis during the OP3 project. Atmospheric Chemistry and Physics, 2011, 11, 9605-9630.	4.9	35
78	Development of ice particles in convective clouds observed over the Black Forest mountains during COPS. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 275-286.	2.7	14
79	Carbonaceous aerosols contributed by traffic and solid fuel burning at a polluted rural site in Northwestern England. Atmospheric Chemistry and Physics, 2011, 11, 1603-1619.	4.9	37
80	Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe. Atmospheric Chemistry and Physics, 2010, 10, 8151-8171.	4.9	105
81	Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction. Atmospheric Chemistry and Physics, 2010, 10, 4065-4083.	4.9	184
82	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland. Atmospheric Chemistry and Physics, 2010, 10, 7389-7407.	4.9	109
83	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	12.6	3,374
84	A comparison between trajectory ensemble and adiabatic parcel modeled cloud properties and evaluation against airborne measurements. Journal of Geophysical Research, 2009, 114, .	3.3	23
85	Influence of particle chemical composition on the phase of cold clouds at a highâ€alpine site in Switzerland. Journal of Geophysical Research, 2009, 114, .	3.3	30
86	Vertical distribution of sub-micron aerosol chemical composition from North-Western Europe and the North-East Atlantic. Atmospheric Chemistry and Physics, 2009, 9, 5389-5401.	4.9	86
87	Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3969-3987.	3.4	163
88	Aerosol and traceâ \in gas measurements in the Darwin area during the wet season. Journal of Geophysical Research, 2008, 113, .	3.3	49
89	Observations of an atmospheric chemical equator and its implications for the tropical warm pool region. Journal of Geophysical Research, 2008, 113, .	3.3	31
90	Correction to "Aerosol and trace-gas measurements in the Darwin area during the wet season― Journal of Geophysical Research, 2008, 113, .	3.3	5

K N Bower

#	Article	IF	CITATIONS
91	The influence of small aerosol particles on the properties of water and ice clouds. Faraday Discussions, 2008, 137, 205-222.	3.2	43
92	The Tropical Warm Pool International Cloud Experiment. Bulletin of the American Meteorological Society, 2008, 89, 629-646.	3.3	173
93	SCOUT-O3/ACTIVE: High-altitude Aircraft Measurements around Deep Tropical Convection. Bulletin of the American Meteorological Society, 2008, 89, 647-662.	3.3	99
94	Supplement to The Tropical Warm Pool International Cloud Experiment. Bulletin of the American Meteorological Society, 2008, 89, ES21-ES23.	3.3	3
95	Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2008, 8, 407-423.	4.9	144
96	Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmospheric Chemistry and Physics, 2007, 7, 6131-6144.	4.9	273
97	Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2007, 7, 1797-1807.	4.9	123
98	Calibration of the Cloud Particle Imager Probes Using Calibration Beads and Ice Crystal Analogs: The Depth of Field. Journal of Atmospheric and Oceanic Technology, 2007, 24, 1860-1879.	1.3	71
99	Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). Aerosol Science and Technology, 2007, 41, 865-872.	3.1	28
100	Counterflow Virtual Impactor Based Collection of Small Ice Particles in Mixed-Phase Clouds for the Physico-Chemical Characterization of Tropospheric Ice Nuclei: Sampler Description and First Case Study. Aerosol Science and Technology, 2007, 41, 848-864.	3.1	83
101	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .	4.0	1,773
102	Aerosol partitioning between the interstitial and the condensed phase in mixedâ€phase clouds. Journal of Geophysical Research, 2007, 112, .	3.3	80
103	Chemical composition of summertime aerosol in the Po Valley (Italy), northern Adriatic and Black Sea. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 61-75.	2.7	111
104	Aerosol Direct Radiative Impact Experiment (ADRIEX) overview. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 3-15.	2.7	32
105	Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds. Atmospheric Research, 2006, 82, 328-336.	4.1	54
106	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	4.9	65
107	Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 315-327.	4.9	150
108	Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX. Atmospheric Chemistry and Physics, 2006, 6, 3289-3301.	4.9	47

#	Article	IF	CITATIONS
109	The characterisation of pollution aerosol in a changing photochemical environment. Atmospheric Chemistry and Physics, 2006, 6, 5573-5588.	4.9	55
110	Cloudâ€resolving simulations of intense tropical <i>Hector</i> thunderstorms: Implications for aerosol–cloud interactions. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 3079-3106.	2.7	51
111	Chemical apportionment of shortwave direct aerosol radiative forcing at the Gosan super-site, Korea during ACE-Asia. Atmospheric Environment, 2006, 40, 6718-6729.	4.1	30
112	Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 1695-1712.	2.7	62
113	Simplification of the representation of the organic component of atmospheric particulates. Faraday Discussions, 2005, 130, 341.	3.2	118
114	An overview of the microphysical structure of cirrus clouds observed during EMERALD-1. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 1143-1169.	2.7	41
115	Street canyon aerosol pollutant transport measurements. Science of the Total Environment, 2004, 334-335, 327-336.	8.0	26
116	Parameterization of the cloud droplet–sulfate relationship. Atmospheric Environment, 2004, 38, 287-292.	4.1	30
117	Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia. Atmospheric Environment, 2004, 38, 2111-2123.	4.1	91
118	Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. Atmospheric Environment, 2004, 38, 5745-5758.	4.1	384
119	Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. Journal of Geophysical Research, 2004, 109, .	3.3	56
120	Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. Journal of Geophysical Research, 2004, 109, .	3.3	144
121	Anatomy of cirrus clouds: Results from the Emerald airborne campaigns. Geophysical Research Letters, 2004, 31, .	4.0	47
122	Assessment of the photochemistry of OH and NO3 on Jeju Island during the Asian-dust-storm period in the spring of 2001. Chemosphere, 2004, 55, 1127-1142.	8.2	22
123	A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. Journal of Aerosol Science, 2004, 35, 909-922.	3.8	702
124	Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	374
125	Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	166
126	Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis― Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	17

#	Article	IF	CITATIONS
127	Modification of the aerosol size distribution within exhaust plumes produced by diesel-powered ships. Journal of Geophysical Research, 2001, 106, 9827-9842.	3.3	11
128	Title is missing!. Water, Air and Soil Pollution, 2001, 1, 365-372.	0.8	3
129	The Role of Cloud Processing in the Relationship between Wet Deposited Sulphur and Sulphur Dioxide Emissions. , 2001, , 365-372.		0
130	ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 750-778.	1.6	44
131	Modelling cloud processing of aerosol during the ACE-2 HILLCLOUD experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 779-800.	1.6	11
132	Aerosol and trace gas measurements over the Birmingham conurbation during PUMA. AIP Conference Proceedings, 2000, , .	0.4	0
133	Aerosol Development and Interaction in an Urban Plume. Aerosol Science and Technology, 2000, 32, 120-126.	3.1	28
134	A closure study of sub-micrometer aerosol particle hygroscopic behaviour. Atmospheric Research, 1999, 50, 205-240.	4.1	166
135	Droplet nucleation and growth in orographic clouds in relation to the aerosol population. Atmospheric Research, 1999, 50, 289-315.	4.1	43
136	A study of the effects of cloud processing of aerosol on the microphysics of cloud. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 1377-1389.	2.7	8
137	The effect of sulphur chemistry on the scattering properties of particles. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 213-220.	4.0	4
138	Cloud droplet nucleation scavenging in relation to the size and hygroscopic behaviour of aerosol particles. Atmospheric Environment, 1997, 31, 2463-2475.	4.1	93
139	Individual Results from GCE Principal Investigators. , 1997, , 61-152.		0
140	Processing of oxidised nitrogen compounds by passage through winter-time orographic cloud. Journal of Atmospheric Chemistry, 1996, 24, 211.	3.2	10
141	A parametrization of the ice water content observed in frontal and convective clouds. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1815-1844.	2.7	63
142	A model of ammonia/ammonium conversion and deposition in a hill cap cloud. Quarterly Journal of the Royal Meteorological Society, 1995, 121, 569-591.	2.7	14
143	Computer modelling of clouds at Kleiner Feldberg. Journal of Atmospheric Chemistry, 1994, 19, 189-229.	3.2	32
144	A model of the development of droplet effective radius in convective cloud. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 443-456.	2.7	2

#	Article	IF	CITATIONS
145	Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 655-679.	2.7	54
146	A model of occult deposition applicable to complex terrain. Quarterly Journal of the Royal Meteorological Society, 1991, 117, 803-823.	2.7	9
147	The effects of entrainment on the growth of droplets in continental cumulus clouds. Quarterly Journal of the Royal Meteorological Society, 1988, 114, 1411-1434.	2.7	29