Marco Falasca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7085957/publications.pdf

Version: 2024-02-01

155 papers 8,680 citations

41344 49 h-index 48315 88 g-index

170 all docs

170 docs citations

170 times ranked

12581 citing authors

#	Article	IF	CITATIONS
1	Targeting pancreatic ductal adenocarcinoma: New therapeutic options for the ongoing battle. Hepatobiliary and Pancreatic Diseases International, 2022, 21, 4-6.	1.3	1
2	Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacological Research, 2022, 175, 106025.	7.1	19
3	Extracellular vesicles derived from pancreatic cancer cells are enriched in the growth factor Midkine. Advances in Biological Regulation, 2022, 83, 100857.	2.3	2
4	Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules, 2022, 12, 320.	4.0	6
5	Sex-divergent expression of cytochrome P450 and SIRTUIN 1–7 proteins in toxicity evaluation of a benzimidazole-derived epigenetic modulator in mice. Toxicology and Applied Pharmacology, 2022, 445, 116039.	2.8	3
6	Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection. Frontiers in Molecular Biosciences, 2021, 8, 632290.	3.5	140
7	Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer. Cancer Letters, 2021, 501, 55-65.	7.2	22
8	Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers, 2021, 13, 1211.	3.7	19
9	Dissecting lipid metabolism alterations in SARS-CoV-2. Progress in Lipid Research, 2021, 82, 101092.	11.6	71
10	Exosomal integrins and their influence on pancreatic cancer progression and metastasis. Cancer Letters, 2021, 507, 124-134.	7.2	24
11	Does the SARS-CoV-2 Spike Protein Receptor Binding Domain Interact Effectively with the DPP4 (CD26) Receptor? A Molecular Docking Study. International Journal of Molecular Sciences, 2021, 22, 7001.	4.1	24
12	Cannabinoids and Cancers, 2021, 13, 4458.	3.7	1
13	Pharmacological and structure-activity relationship studies of oleoyl-lysophosphatidylinositol synthetic mimetics. Pharmacological Research, 2021, 172, 105822.	7.1	4
14	Therapeutic potential of cannabinoids in combination cancer therapy. Advances in Biological Regulation, 2021, 79, 100774.	2.3	21
15	Role of Pancreatic Stellate Cell-Derived Exosomes in Pancreatic Cancer-Related Diabetes: A Novel Hypothesis. Cancers, 2021, 13, 5224.	3.7	12
16	Editorial: Recent Advances in In Vitro and In Vivo Multi-Omics Analyses of Extracellular Vesicles: Therapeutic Targets and Biomarkers. Frontiers in Molecular Biosciences, 2021, 8, 784436.	3.5	0
17	The intricate relationship between diabetes, obesity and pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188326.	7.4	47
18	Abilities of \hat{l}^2 -Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	2.3	9

#	Article	IF	Citations
19	Inositol Polyphosphate-Based Compounds as Inhibitors of Phosphoinositide 3-Kinase-Dependent Signaling. International Journal of Molecular Sciences, 2020, 21, 7198.	4.1	3
20	Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers, 2020, 12, 2949.	3.7	32
21	Signalling Properties of Inositol Polyphosphates. Molecules, 2020, 25, 5281.	3.8	9
22	Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. International Journal of Molecular Sciences, 2020, 21, 8623.	4.1	180
23	Inhibition of the Lysophosphatidylinositol Transporter ABCC1 Reduces Prostate Cancer Cell Growth and Sensitizes to Chemotherapy. Cancers, 2020, 12, 2022.	3.7	13
24	Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling. Journal of Experimental and Clinical Cancer Research, 2020, 39, 276.	8.6	14
25	Antiplatelet Drug Ticagrelor Enhances Chemotherapeutic Efficacy by Targeting the Novel P2Y12-AKT Pathway in Pancreatic Cancer Cells. Cancers, 2020, 12, 250.	3.7	28
26	Photophysical and Biological Properties of Iridium Tetrazolato Complexes Functionalised with Fatty Acid Chains. Inorganics, 2020, 8, 23.	2.7	4
27	Pharmacological inhibition of ABCC3 slows tumour progression in animal models of pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 312.	8.6	18
28	Targeting the adipose tissue to fight prostate cancer. Translational Andrology and Urology, 2019, 8, S229-S231.	1.4	0
29	Editorial: Gastrointestinal Hormones. Frontiers in Endocrinology, 2019, 10, 498.	3.5	1
30	PLC-gamma-1 phosphorylation status is prognostic of metastatic risk in patients with early-stage Luminal-A and -B breast cancer subtypes. BMC Cancer, 2019, 19, 747.	2.6	22
31	Dual PDK1/Aurora Kinase A Inhibitors Reduce Pancreatic Cancer Cell Proliferation and Colony Formation. Cancers, 2019, 11, 1695.	3.7	4
32	Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 191.	8.6	14
33	ABCC3 is a novel target for the treatment of pancreatic cancer. Advances in Biological Regulation, 2019, 73, 100634.	2.3	18
34	Oncogenic and Nonâ€Malignant Pancreatic Exosome Cargo Reveal Distinct Expression of Oncogenic and Prognostic Factors Involved in Tumor Invasion and Metastasis. Proteomics, 2019, 19, e1800158.	2,2	51
35	Synthesis, reactivity and preliminary biological activity of iron(0) complexes with cyclopentadienone and aminoâ€appended <i>N</i> à€heterocyclic carbene ligands. Applied Organometallic Chemistry, 2019, 33, e4779.	3.5	16
36	Pancreatic cancer tumorspheres are cancer stem-like cells with increased chemoresistance and reduced metabolic potential. Advances in Biological Regulation, 2019, 72, 63-77.	2.3	19

#	Article	IF	CITATIONS
37	Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. Journal of Experimental and Clinical Cancer Research, 2019, 38, 472.	8.6	14
38	Metal-based antitumor compounds: beyond cisplatin. Future Medicinal Chemistry, 2019, 11, 119-135.	2.3	84
39	Blood-brain barrier disturbances in diabetes-associated dementia: Therapeutic potential for cannabinoids. Pharmacological Research, 2019, 141, 291-297.	7.1	26
40	ABC transporters as cancer drivers: Potential functions in cancer development. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 52-60.	2.4	103
41	Bioactive lipids in cancer stem cells. World Journal of Stem Cells, 2019, 11, 693-704.	2.8	21
42	Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Advances in Biological Regulation, 2018, 68, 77-87.	2.3	132
43	Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Frontiers in Endocrinology, 2018, 9, 584.	3.5	54
44	Properties and prospects for rhenium(<scp>i</scp>) tricarbonyl N-heterocyclic carbene complexes. Chemical Communications, 2018, 54, 12429-12438.	4.1	38
45	Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Advances in Biological Regulation, 2018, 69, 16-34.	2.3	27
46	GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene, 2018, 37, 6368-6382.	5.9	77
47	Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1132-1141.	2.4	16
48	3-Phosphoinositide-Dependent Kinase 1 (PDK1)., 2018, , 12-15.		1
49	ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward?. World Journal of Gastroenterology, 2018, 24, 3222-3238.	3.3	77
50	Epithelial plasticity is crucial for pancreatic cancer metastatic organotropism. Annals of Translational Medicine, 2018, 6, S53-S53.	1.7	3
51	mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate. Science, 2017, 356, 968-972.	12.6	126
52	Defining the Anti ancer Activity of Tricarbonyl Rhenium Complexes: Induction of G2/M Cell Cycle Arrest and Blockade of Auroraâ€A Kinase Phosphorylation. Chemistry - A European Journal, 2017, 23, 6518-6521.	3.3	52
53	The role of phospholipase \hat{Cl}^31 in breast cancer and its clinical significance. Future Oncology, 2017, 13, 1991-1997.	2.4	11
54	Class II Phosphoinositide 3-Kinases as Novel Drug Targets. Journal of Medicinal Chemistry, 2017, 60, 47-65.	6.4	26

#	Article	IF	CITATIONS
55	Targeting PDK1 for Chemosensitization of Cancer Cells. Cancers, 2017, 9, 140.	3.7	48
56	ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. International Journal of Molecular Sciences, 2017, 18, 2362.	4.1	281
57	Targeting Platelets for the Treatment of Cancer. Cancers, 2017, 9, 94.	3.7	50
58	The Role of Platelet-Derived ADP and ATP in Promoting Pancreatic Cancer Cell Survival and Gemcitabine Resistance. Cancers, 2017 , 9 , 142 .	3.7	32
59	Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. International Journal of Molecular Sciences, 2017, 18, 1338.	4.1	431
60	Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World Journal of Gastrointestinal Oncology, 2017, 9, 37.	2.0	51
61	Pentakisphosphate. , 2017, , 3473-3475.		0
62	Lysophosphatidylinositol Signalling and Metabolic Diseases. Metabolites, 2016, 6, 6.	2.9	50
63	A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion. Scientific Reports, 2016, 6, 26142.	3.3	26
64	Novel roles for class II Phosphoinositide 3-Kinase $C2\hat{l}^2$ in signalling pathways involved in prostate cancer cell invasion. Scientific Reports, 2016, 6, 23277.	3.3	22
65	Pancreatic cancer: Current research and future directions. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 123-132.	7.4	65
66	Role of the lysophosphatidylinositol/GPR55 axis in cancer. Advances in Biological Regulation, 2016, 60, 88-93.	2.3	52
67	Class II phosphoinositide 3-kinase $C2\hat{l}^2$ regulates a novel signaling pathway involved in breast cancer progression. Oncotarget, 2016, 7, 18325-18345.	1.8	25
68	3-Phosphoinositide-Dependent Kinase 1 (PDK1)., 2016,, 1-4.		0
69	The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochemical Journal, 2015, 469, 199-210.	3.7	31
70	CD31 signals confer immune privilege to the vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5815-24.	7.1	52
71	Diet and Pancreatic Cancer Prevention. Cancers, 2015, 7, 2309-2317.	3.7	40
72	Activation of phosphatidylinositol 3-kinase \hat{l}^2 by the platelet collagen receptors integrin $\hat{l}\pm2\hat{l}^21$ and GPVI: The role of Pyk2 and c-Cbl. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1879-1888.	4.1	26

#	Article	IF	CITATIONS
73	PI3K-C2 \hat{I}^3 is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nature Communications, 2015, 6, 7400.	12.8	155
74	Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme. European Journal of Medicinal Chemistry, 2015, 105, 274-288.	5 . 5	37
75	Pentakisphosphate., 2015, , 1-3.		O
76	Lysophosphatidylinositol: a novel link between ABC transporters and G-protein-coupled receptors. Biochemical Society Transactions, 2014, 42, 1372-1377.	3.4	31
77	Caffeine and the analog CGS 15943 inhibit cancer cell growth by targeting the phosphoinositide 3-kinase/Akt pathway. Cancer Biology and Therapy, 2014, 15, 524-532.	3.4	31
78	Targeting p110gamma in gastrointestinal cancers: attack on multiple fronts. Frontiers in Physiology, 2014, $5,391$.	2.8	9
79	Analysis, Regulation, and Roles of Endosomal Phosphoinositides. Methods in Enzymology, 2014, 535, 75-91.	1.0	3
80	PI3K Class II $\hat{l}\pm$ Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function. Developmental Cell, 2014, 28, 647-658.	7.0	177
81	Cancer Chemoprevention With Nuts. Journal of the National Cancer Institute, 2014, 106, dju238-dju238.	6.3	51
82	New insight into the intracellular roles of class II phosphoinositide 3-kinases. Biochemical Society Transactions, 2014, 42, 1378-1382.	3.4	30
83	Emerging role of the KRAS-PDK1 axis in pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 10752.	3.3	33
84	Synthesis of Novel 3,5-Disubstituted-2-oxindole Derivatives As Antitumor Agents against Human Nonsmall Cell Lung Cancer. ACS Medicinal Chemistry Letters, 2013, 4, 1137-1141.	2.8	24
85	Role of phospholipase C in cell invasion and metastasis. Advances in Biological Regulation, 2013, 53, 309-318.	2.3	64
86	The prolineâ€rich tyrosine kinase Pyk2 regulates platelet integrin αIIbβ3 outsideâ€in signaling. Journal of Thrombosis and Haemostasis, 2013, 11, 345-356.	3.8	35
87	Overexpression of activated phospholipase Cl̂³1 is a risk factor for distant metastases in T1â€T2, N0 breast cancer patients undergoing adjuvant chemotherapy. International Journal of Cancer, 2013, 132, 1022-1031.	5.1	41
88	Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca2+-dependent tyrosine kinase Pyk2. Blood, 2013, 121, 648-657.	1.4	38
89	Genetic and Epigenetic Regulation of Phosphoinositide 3-kinase Isoforms. Current Pharmaceutical Design, 2013, 19, 680-686.	1.9	8
90	3-Phosphoinositide-dependent protein kinase-1 as an emerging target in the management of breast cancer. Cancer Management and Research, 2013, 5, 271.	1.9	40

#	Article	IF	Citations
91	Class II Phosphoinositide 3-Kinases Contribute to Endothelial Cells Morphogenesis. PLoS ONE, 2013, 8, e53808.	2.5	23
92	Genetic and epigenetic regulation of phosphoinositide 3-kinase isoforms. Current Pharmaceutical Design, 2013, 19, 680-6.	1.9	5
93	A novel regulatory mechanism links PLCγ1 to PDK1. Journal of Cell Science, 2012, 125, 3153-63.	2.0	40
94	Investigational ABC transporter inhibitors. Expert Opinion on Investigational Drugs, 2012, 21, 657-666.	4.1	100
95	Role and regulation of phosphatidylinositol 3-kinase \hat{l}^2 in platelet integrin $\hat{l}\pm2\hat{l}^21$ signaling. Blood, 2012, 119, 847-856.	1.4	64
96	Phosphoinositides signalling in cancer: Focus on PI3K and PLC. Advances in Biological Regulation, 2012, 52, 166-182.	2.3	21
97	Lysophosphatidylinositol signalling: New wine from an old bottle. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 694-705.	2.4	78
98	Cancer chemoprevention by nuts: evidence and promises. Frontiers in Bioscience - Scholar, 2012, S4, 109.	2.1	6
99	Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochemical Journal, 2012, 443, 587-601.	3.7	141
100	PI3K class IB controls the cell cycle checkpoint promoting cell proliferation in hepatocellular carcinoma. International Journal of Cancer, 2012, 130, 2505-2513.	5.1	36
101	Cancer chemoprevention by nuts evidence and promises. Frontiers in Bioscience - Scholar, 2012, S4, 109-120.	2.1	10
102	Boyden Chamber. Methods in Molecular Biology, 2011, 769, 87-95.	0.9	38
103	Editorial [Hot Topic: Phosphoinositide 3-Kinase Pathway Inhibitors: Pharmacology, Metabolism & Drug Development (Guest Editor: Marco Falasca)]. Current Medicinal Chemistry, 2011, 18, 2673-2673.	2.4	6
104	The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene, 2011, 30, 142-152.	5.9	187
105	Akt/protein kinase B in skeletal muscle physiology and pathology. Journal of Cellular Physiology, 2011, 226, 29-36.	4.1	45
106	Targeting PDK1 in Cancer. Current Medicinal Chemistry, 2011, 18, 2763-2769.	2.4	128
107	Class II Phosphoinositide 3-Kinase Regulates Exocytosis of Insulin Granules in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2011, 286, 4216-4225.	3.4	130
108	Targeting Phosphoinositide 3-Kinase Pathways in Pancreatic Cancer – from Molecular Signalling to Clinical Trials. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 455-463.	1.7	41

#	Article	IF	CITATIONS
109	Pentakisphosphate., 2011, , 2806-2808.		О
110	PI3K/Akt Signalling Pathway Specific Inhibitors: A Novel Strategy to Sensitize Cancer Cells to Anti-Cancer Drugs. Current Pharmaceutical Design, 2010, 16, 1410-1416.	1.9	121
111	A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. British Journal of Cancer, 2010, 102, 104-114.	6.4	54
112	Key Role of Phosphoinositide 3-Kinase Class IB in Pancreatic Cancer. Clinical Cancer Research, 2010, 16, 4928-4937.	7.0	92
113	A Phosphoinositide 3-Kinase/Phospholipase Cgamma1 Pathway Regulates Fibroblast Growth Factor-Induced Capillary Tube Formation. PLoS ONE, 2009, 4, e8285.	2.5	37
114	Anti-cancer activity of the bioactive compound inositol pentakisphosphate. Phytochemistry Reviews, 2009, 8, 369-374.	6.5	2
115	Rethinking phosphatidylinositol 3-monophosphate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1795-1803.	4.1	44
116	Phospholipase $\hat{Cl^3}1$ Is Required for Metastasis Development and Progression. Cancer Research, 2008, 68, 10187-10196.	0.9	135
117	The Role of Phosphoinositide 3-Kinase C2α in Insulin Signaling. Journal of Biological Chemistry, 2007, 282, 28226-28236.	3.4	136
118	Phosphoinositide 3-kinase-dependent regulation of phospholipase Cl̂³. Biochemical Society Transactions, 2007, 35, 229-230.	3.4	33
119	Role of class II phosphoinositide 3-kinase in cell signalling. Biochemical Society Transactions, 2007, 35, 211-214.	3.4	158
120	Emerging roles of phosphatidylinositol 3-monophosphate as a dynamic lipid second messenger. Archives of Physiology and Biochemistry, 2006, 112, 274-284.	2.1	20
121	Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. Journal of Cell Biology, 2005, 169, 789-799.	5.2	220
122	Inhibition of the Phosphatidylinositol 3-Kinase/Akt Pathway by Inositol Pentakisphosphate Results in Antiangiogenic and Antitumor Effects. Cancer Research, 2005, 65, 8339-8349.	0.9	126
123	Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene, 2004, 23, 1754-1765.	5.9	89
124	Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO Journal, 2003, 22, 4178-4189.	7.8	139
125	Role of Pleckstrin Homology Domain in Regulating Membrane Targeting and Metabolic Function of Insulin Receptor Substrate 3. Molecular Endocrinology, 2003, 17, 1568-1579.	3.7	16
126	The mechanism involved in the regulation of phospholipase \hat{Cl}^31 activity in cell migration. Oncogene, 2002, 21, 6520-6529.	5.9	103

#	Article	IF	CITATIONS
127	Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. FEBS Letters, 2001, 506, 173-179.	2.8	113
128	Modulation of Oncogenic DBL Activity by Phosphoinositol Phosphate Binding to Pleckstrin Homology Domain. Journal of Biological Chemistry, 2001, 276, 19524-19531.	3.4	68
129	Novel functional PI 3â€kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB Journal, 2000, 14, 1179-1187.	0.5	73
130	Different Subcellular Localization and Phosphoinositides Binding of Insulin Receptor Substrate Protein Pleckstrin Homology Domains. Molecular Endocrinology, 2000, 14, 823-836.	3.7	66
131	Patterns within protein/polyphosphoinositide interactions provide specific targets for therapeutic intervention. FASEB Journal, 2000, 14, 2618-2622.	0.5	28
132	A Novel Positive Feedback Loop Mediated by the Docking Protein Gab1 and Phosphatidylinositol 3-Kinase in Epidermal Growth Factor Receptor Signaling. Molecular and Cellular Biology, 2000, 20, 1448-1459.	2.3	334
133	The Role of the Pleckstrin Homology Domain in Membrane Targeting and Activation of Phospholipase $\hat{Cl^2}$ 1. Journal of Biological Chemistry, 2000, 275, 14873-14881.	3.4	59
134	Activation of phospholipase Cgamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO Journal, 1998, 17, 414-422.	7.8	507
135	Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene, 1998, 16, 2357-2365.	5.9	54
136	Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains. Journal of Biological Chemistry, 1998, 273, 30497-30508.	3.4	398
137	Phosphatidylinositol 3-Kinase Mediates Epidermal Growth Factor-Induced Activation of the c-Jun N-Terminal Kinase Signaling Pathway. Molecular and Cellular Biology, 1997, 17, 5784-5790.	2.3	127
138	Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains. Trends in Cell Biology, 1997, 7, 237-242.	7.9	168
139	Changes in the Levels of Glycerophosphoinositols During Differentiation of Hepatic and Neuronal Cells. FEBS Journal, 1996, 241, 386-392.	0.2	21
140	Glycerophosphoinositol-4-Phosphate in Intracellular Signalling. , 1996, , 229-237.		1
141	Elevated levels and mitogenic activity of lysophosphatidylinositol in kâ€rasâ€transformed epithelial cells. FEBS Journal, 1994, 221, 383-389.	0.2	71
142	A sodium channel opener inhibits stimulation of human peripheral blood mononuclear cells. Molecular Immunology, 1992, 29, 517-524.	2.2	8
143	Diet restriction: A tool to prolong the lifespan of experimental animals. Model and current hypothesis of action. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 103, 551-554.	0.6	8
144	Cholesterol-Rich Rabbit Serum Modulates ?-Adrenergic Receptor Density of Human Lymphocytes Annals of the New York Academy of Sciences, 1992, 650, 239-244.	3.8	2

#	Article	IF	CITATIONS
145	Bretylium-induced voltage-gated sodium current in human lymphocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1137, 143-147.	4.1	12
146	Food restriction in female Wistar rats: V. Lipid peroxidation and antioxidant enzymes in the liver. Archives of Gerontology and Geriatrics, 1992, 14, 93-99.	3.0	38
147	Aging impairs membrane potential responsiveness as well as opening of voltage and ligand gated Na+channels in human lymphocytes. Archives of Gerontology and Geriatrics, 1992, 14, 145-154.	3.0	3
148	Studies on cell membrane properties in food restricted rats. Aging Clinical and Experimental Research, 1991, 3, 401-403.	2.9	3
149	Diet restriction, body temperature and physicochemical properties of cell membranes. Archives of Gerontology and Geriatrics, 1991, 12, 179-185.	3.0	7
150	Parameters to monitor aging with a possible perspective for intervention — an immunological approach. Archives of Gerontology and Geriatrics, 1991, 12, 231-238.	3.0	1
151	Food restriction in female Wistar rats, IV. Morphometric parameters of cerebellar synapses. Archives of Gerontology and Geriatrics, 1991, 13, 161-165.	3.0	0
152	Food restriction in female Wistar rats. I. survival characteristics, membrane microviscosity and proliferative response in lymphocytes. Archives of Gerontology and Geriatrics, 1990, 11, 99-108.	3.0	22
153	Food restriction in female Wistar rats. II. \hat{l}^2 -adrenoceptor density in the cerebellum and in the splenic lymphocytes. Archives of Gerontology and Geriatrics, 1990, 11, 109-115.	3.0	3
154	Food restriction in female Wistar rats. III. Thermotropic transition of membrane lipid and 5'-nucleotidase activity in hepatocytes. Archives of Gerontology and Geriatrics, 1990, 11, 117-124.	3.0	11
155	Phospholipases in Signal Transduction. , 0, , 283-317.		O